Advancements and Challenges in the Implementation of 5G Networks: A Comprehensive Analysis

Mahyuni¹, Ade Arya Bimantara^{2*}, Rifky Nurfaizi³, Ridhuan Ahsanitaqwim⁴, Victorianda⁵

¹Department of Linguistics and Applied Linguistics, University of Mataram, Indonesia

^{2,3,4}Faculty of Information Technology, University of Raharja, Indonesia

⁵Faculty of Computer System, Pandawan Incorporation, United Kingdom

¹mahyuni@unram.ac.id, ²ade.arya@raharja.info, ³rifky.nurfaizi@raharja.info,

⁴ridhuan@raharja.info, ⁵Victorianda@eduaward.co.uk

*Corresponding Author

Article Info

Article history:

Received June 23, 2024 Revised August 13, 2024 Accepted August 20, 2024

Keywords:

Big Data Machine Learning Digital Marketing Consumer Targeting Predictive Analytics

ABSTRACT

The evolution of cellular networks from 1G to 5G has introduced significant advancements in speed, capacity, and reliability. Now, 5G is set to transform communication technology further with higher speeds, increased capacity, reduced latency, and massive IoT connectivity. This research aims to identify the opportunities and challenges in the implementation of 5G networks, focusing on improvements in network speed and capacity, IoT development, industrial applications, user experience, and infrastructure, security, privacy, regulatory, and spectrum challenges. A mixed-methods approach was used, combining qualitative and quantitative analyses. Data were collected from primary sources (expert interviews, surveys) and secondary sources (academic literature, industry reports). Thematic analysis and descriptive and inferential statistics were applied. 5G significantly enhances network speed and capacity, enabling faster, more reliable communication and greater device connectivity. It supports industrial automation, operational efficiency, and innovation in sectors like healthcare, automotive, and manufacturing. Despite its potential, 5G faces challenges such as high infrastructure costs, coverage issues, and security risks. Effective collaboration between government and industry, prioritizing advanced technologies, and developing a comprehensive 5G ecosystem are essential for successful implementation.

*Corresponding Author:

Ade Arya Bimantara Faculty of Information Technology, University of Raharja, Indonesia ade.arya@raharja.info

1. INTRODUCTION

The evolution of cellular networks has been one of the most significant achievements in modern communication technology. Starting from the first generation (1G) introduced in the 1980s, cellular networks have rapidly evolved to the fifth generation (5G), which is now being implemented globally [1]. Each generation has brought substantial improvements in speed, capacity, and reliability of wireless communication [2]. The first generation (1G) enabled analog voice calls, while 2G introduced text messaging and digital encryption for calls. The third generation (3G) enabled faster internet access, and 4G LTE revolutionized mobile data usage with speeds that supported video streaming and cloud-based applications [3]. Now, 5G networks are poised to transform the communication and technology landscape even further, offering much higher data speeds, increased network capacity, reduced latency, and massive connectivity for Internet of Things (IoT) devices. Core technologies such as millimeter waves, small cells, Massive MIMO (Multiple Input Multiple Output),

and beamforming enable 5G to meet the demands of applications like augmented reality (AR), virtual reality (VR), and autonomous vehicles [4].

The transition from 4G to 5G is not merely an incremental upgrade but represents a fundamental shift in how networks are designed and deployed. While 4G networks primarily focused on enhancing mobile broadband services, 5G aims to provide a unified connectivity fabric that supports a diverse array of use cases. This includes not only enhanced mobile broadband (eMBB) but also ultra-reliable low-latency communication (URLLC) and massive machine-type communication (mMTC). These capabilities are expected to drive innovation across multiple industries, from healthcare and manufacturing to transportation and entertainment, enabling new applications such as remote surgery, smart factories, and connected vehicles. However, the deployment of 5G networks also presents several challenges. One of the primary challenges is the need for significant investments in new infrastructure, including the installation of small cells and upgrading existing base stations to support new technologies like Massive MIMO. Additionally, the higher frequencies used in 5G, such as millimeter waves, have shorter ranges and are more susceptible to interference from obstacles like buildings and trees, necessitating more densely packed network infrastructure. This raises concerns about the cost and feasibility of deploying 5G in rural and underserved areas where the return on investment may be lower

Another critical challenge is ensuring the security and privacy of 5G networks, which will support a vast number of connected devices and handle large volumes of sensitive data. As 5G networks become more integral to critical infrastructure and services, they also become more attractive targets for cyberattacks [5]. Ensuring robust security measures, including encryption, authentication, and network slicing, is essential to protect against threats and ensure the resilience of 5G networks. Moreover, regulatory and spectrum allocation issues also play a crucial role in the successful rollout of 5G, as different countries have varying approaches to managing spectrum resources and setting standards for network deployment [6]. The main objective of this research is to identify the opportunities and challenges associated with the implementation of 5G networks. This research focuses on key aspects including the improvement of network speed and capacity, the impact on the development and implementation of IoT, industrial applications, user experience, as well as infrastructure, security, privacy, regulatory, and spectrum challenges [7]. Specifically, this research aims to analyze how 5G can enhance network speed and capacity compared to previous technologies and investigate the impact of 5G on the development and implementation of IoT [8]. Additionally, it will explore the application of 5G in various industrial sectors such as healthcare, automotive, and manufacturing, and identify the benefits of 5G for end users, including improved mobile broadband experiences [9].

This article is structured to provide a comprehensive understanding of the opportunities and challenges faced in the implementation of 5G networks [10]. It includes an introduction that provides background on the evolution of cellular networks and the importance of 5G, followed by a literature review discussing the evolution from 1G to 4G and core technologies supporting 5G.

1.1. Literature Review

1.1.1. Evolution of Cellular Networks

The evolution of cellular networks has been marked by significant advancements from the first generation (1G) to the current fifth generation (5G) [11]. Each generation has brought notable improvements in speed, capacity, and functionality [12]. Introduced in the 1980s, 1G was an analog system primarily designed for voice communication. Although it laid the groundwork for mobile telephony, it was limited by poor voice quality and a lack of security. The second generation (2G), emerging in the 1990s, introduced digital encryption, improved voice quality, and the ability to send text messages (SMS). Technologies like GSM (Global System for Mobile Communications) and CDMA (Code Division Multiple Access) became standard, enhancing security and capacity [13]. The third generation (3G), launched in the early 2000s, was a significant leap forward, enabling mobile internet access with higher data transfer rates. Technologies such as UMTS (Universal Mobile Telecommunications System) and CDMA2000 allowed for multimedia messaging, video calls, and mobile internet browsing. The fourth generation (4G) and its enhancement, 4G LTE (Long Term Evolution), introduced in the late 2000s, revolutionized mobile broadband by offering high-speed internet access that supported streaming services, online gaming, and high-definition video calls [14]. LTE provided even faster speeds and lower latency, making it the backbone of modern mobile communication [15].

1.1.2. Core Technologies of 5G

5G represents a substantial advancement over its predecessors, incorporating several core technologies that enable its superior performance:

- Millimeter Waves: 5G utilizes higher frequency bands, known as millimeter waves, ranging from 30 GHz to 300 GHz. These frequencies can carry vast amounts of data at high speeds but have shorter ranges and are more susceptible to physical obstructions. This necessitates the deployment of numerous small cells to ensure consistent coverage.
- Small Cells: To address the range limitations of millimeter waves, 5G relies on small cells, which are low-power base stations deployed densely throughout urban areas. Small cells enhance network capacity and provide better coverage in densely populated regions. They work in conjunction with macro cells, forming a heterogeneous network that optimizes performance.
- Massive MIMO: Multiple Input Multiple Output (MIMO) technology has been significantly enhanced in 5G, leading to Massive MIMO. This involves the use of a large number of antennas at the base station to serve multiple users simultaneously. Massive MIMO improves spectral efficiency, increases network capacity, and enhances data rates, ensuring a more reliable connection.
- Beamforming: Beamforming is a signal processing technique used in conjunction with Massive MIMO. It directs data signals to specific users rather than broadcasting them in all directions. This targeted approach reduces interference, enhances signal quality, and improves overall network efficiency.

These core technologies collectively enable 5G to provide unprecedented speed, capacity, and reliability, supporting a wide range of applications from augmented reality (AR) and virtual reality (VR) to autonomous vehicles and smart cities [16].

1.1.3. Related Research

Numerous studies have examined the implementation, benefits, and challenges of 5G technology. Highlight the technical innovations of 5G, emphasizing the potential for millimeter waves and Massive MIMO to drastically improve network performance [17]. Their study underscores the need for new spectrum allocation policies to accommodate the high-frequency bands used by 5G and discusses the role of small cells in achieving ubiquitous coverage [18]. Other research has explored the impact of 5G on various sectors, such as healthcare, manufacturing, and transportation, demonstrating its potential to drive significant advancements and efficiencies across industries [19].

2. THE COMPREHENSIVE THEORETICAL BASIS

2.1. Research Design

This study employs a mixed-methods approach, combining qualitative and quantitative analyses to identify opportunities and challenges related to the implementation of 5G networks [20]. This approach ensures a comprehensive understanding of various technical, economic, and social aspects of 5G [21].

2.2. Data Collection

Data collection integrates primary and secondary sources as follows:

1. Primary Data Sources:

- Expert Interviews: In-depth interviews with industry experts, technologists, regulators, and academics to gain insights into the opportunities and challenges of 5G.
- Surveys: Questionnaires distributed to telecommunications industry players, technology companies, and end users to collect quantitative data on their perceptions, expectations, and experiences with 5G.
- Academic Literature: Reviewing journal articles, conference papers, and previous research reports to provide a theoretical foundation.
- Industry and Government Reports: Collecting information from industry reports, case studies, and government publications on 5G implementation, regulatory policies, and market statistics.

Additionally, documentation methods involve collecting and reviewing relevant documents such as white papers, technical reports, and regulations [22]. Participant observation is conducted to observe the implementation of 5G in real-world situations, such as field trials and pilot projects [23].

2.3. Data Analysis

The study employs qualitative techniques like thematic analysis to identify key themes from interviews and observations, and case studies to examine 5G implementation in various contexts [24]. Quantitative analysis involves descriptive statistics to identify trends and patterns in survey data, and inferential statistics such as t-tests, ANOVA, and regression to evaluate relationships between variables [25]. Data triangulation is used to combine qualitative and quantitative findings, ensuring the validity and reliability of the research results and providing a holistic understanding of the research problem [26].

3. RESULT AND DISCUSSION

3.1. Speed and Capacity

5G offers significant improvements in network speed and capacity compared to previous technologies such as 4G LTE [27]. Core technologies supporting 5G, such as millimeter waves, Massive MIMO, and beamforming, enable data transmission at much higher speeds and lower latency [28]. Theoretical download speeds of 5G can reach up to 10 Gbps, more than 100 times the speed of 4G [29]. This opens up new opportunities for applications that require large data transfers in a short time, such as 4K/8K video streaming, virtual reality (VR), and augmented reality (AR) [30]. Additionally, increased network capacity means that 5G can support more connected devices simultaneously without sacrificing performance, which is crucial in densely populated urban environments and large events where thousands of users access the network simultaneously [31].

Table 1. Comparison of Network Technologies

Technology	Speed (Mbps)	Latency (ms)	Capacity (Devices/km²)
4G LTE	100	30-50	10,000
5G	10,000	1-10	1,000,000

Table 1 compares the key performance metrics of 4G LTE and 5G network technologies, specifically focusing on speed, latency, and capacity. The comparison reveals that 5G technology marks a significant advancement over 4G LTE in all measured aspects. Speed (Mbps): 5G offers a maximum speed of up to 10,000 Mbps, which is 100 times faster than the maximum speed of 4G LTE at 100 Mbps. This remarkable increase in speed facilitates faster data transmission, enabling more efficient communication and processing of large amounts of data in real-time. Latency (ms): Latency, the delay before a transfer of data begins following an instruction for its transfer, is significantly reduced in 5G networks. While 4G LTE networks exhibit latency ranging from 30 to 50 milliseconds, 5G networks achieve a latency as low as 1 millisecond and typically remain within the range of 1 to 10 milliseconds. This ultra-low latency is critical for applications requiring real-time responsiveness, such as autonomous vehicles, remote surgery, and virtual reality.

Capacity (Devices/km²): 5G also dramatically increases network capacity, supporting up to 1,000,000 devices per square kilometer, compared to 10,000 devices per square kilometer with 4G LTE. This enhanced capacity is crucial in urban environments and densely populated areas, where numerous devices simultaneously connect to the network. The ability to support a higher density of connected devices paves the way for the widespread adoption of the Internet of Things (IoT) and smart city technologies. Overall, the transition from 4G LTE to 5G represents a substantial leap forward in network technology, promising not only faster and more responsive networks but also the ability to handle a vastly greater number of connected devices, thereby supporting the next generation of digital applications and services.

3.2. Internet of Things (IoT)

5G plays a crucial role in the development and implementation of the Internet of Things (IoT). IoT encompasses a network of interconnected devices, from industrial sensors to smart home devices, that communicate and exchange data in real-time [32]. With the capacity to handle millions of devices per square kilometer and very low latency, 5G enables efficient and fast communication between IoT devices [33]. In the industrial sector, 5G can support factory automation and smart manufacturing processes by connecting machines, robots, and control systems with high speed and reliability [34]. In the healthcare sector, 5G enables remote health

monitoring, telemedicine operations, and interconnected medical devices, improving healthcare quality and accessibility. Additionally, 5G supports the development of autonomous vehicles that require real-time communication for navigation and safety [35].

3.3. Industrial Applications

The application of 5G in various industrial sectors demonstrates significant potential for digital transformation and operational efficiency improvements [36]. In healthcare, 5G enables better telemedicine, providing access to high-quality healthcare services without geographical limitations. It allows the use of connected medical devices for real-time patient monitoring and rapid medical intervention. In the automotive industry, 5G supports the development of autonomous vehicles and vehicle-to-everything (V2X) connectivity. Autonomous vehicles require fast and reliable communication to operate safely, while V2X allows vehicles to communicate with road infrastructure, pedestrians, and other vehicles to enhance safety and traffic efficiency. In manufacturing, 5G enables smart factories by connecting machines, robots, and control systems in a highly responsive and reliable network. It supports automation, predictive maintenance, and efficient resource management, increasing productivity and reducing operational costs.

3.4. User Experience

The benefits of 5G for end users are diverse, encompassing improved mobile broadband experiences, faster communication, and access to more advanced applications. Users can enjoy much faster download and upload speeds, enabling high-quality video streaming, lag-free online gaming, and downloading large files in seconds. Lower latency means almost instantaneous response times for real-time applications such as VR and AR. With increased network capacity, users can enjoy more stable and reliable connections, even in high-density areas such as stadiums, city centers, and large events. This reduces frustration due to network congestion and improves overall service quality. 5G paves the way for various new applications that were not possible with previous technologies. For example, AR and VR can provide more immersive and interactive experiences in education, entertainment, and professional training. Autonomous vehicles and smart cities also become more practical with the support of 5G networks.

3.5. Case Study: Implementation in South Korea

In this case study, we examine the implementation of 5G technology in South Korea, one of the leading countries in adopting 5G. South Korea launched its first commercial 5G services in April 2019, aiming to establish itself as a global leader in 5G technology. The country's three major telecom operators – SK Telecom, KT Corporation, and LG Uplus – have played crucial roles in the rapid deployment and expansion of 5G networks.

3.6. Successes

- Rapid Deployment: South Korea achieved one of the fastest 5G rollouts globally, with extensive coverage in major cities and urban areas within a short period. By the end of 2019, millions of South Korean consumers had access to 5G services.
- **Technological Innovation:** South Korean operators have been at the forefront of developing and implementing advanced 5G technologies such as millimeter waves, Massive MIMO, and network slicing. These innovations have significantly enhanced network performance and user experiences.
- Ecosystem Development: The South Korean government and private sector have collaborated to build a robust 5G ecosystem. Initiatives include the development of 5G-enabled devices, applications, and services across various sectors such as healthcare, smart cities, and autonomous driving.

3.7. Challenges and Lessons Learned

The deployment of 5G in South Korea faced several challenges, including high costs, coverage gaps, and consumer adoption issues. High costs associated with 5G infrastructure required significant investment in new equipment, base stations, and network upgrades. Ensuring comprehensive 5G coverage, especially in rural and remote areas, proved difficult, and there were challenges in maintaining consumer adoption momentum. Despite these challenges, key lessons learned include the importance of government and industry collaboration, significant investment in advanced technologies, and the focus on ecosystem development. Collaborative efforts between the government and private sector facilitated rapid rollout and technological advancements.

Prioritizing technological innovations like millimeter waves, Massive MIMO, and network slicing maximized network capabilities. Developing a comprehensive 5G ecosystem that includes devices, applications, and services is essential for driving adoption and creating new business opportunities.

4. CONCLUSION

This research demonstrates that 5G technology offers significant opportunities but also presents various challenges that must be addressed. The analysis reveals that 5G has the potential to drastically improve network speed and capacity, enabling faster and more reliable communication, and supporting greater device connectivity, especially in the development and implementation of IoT. In industrial sectors, 5G can support automation, enhance operational efficiency, and drive innovation in fields such as healthcare, automotive, and manufacturing. However, challenges such as high infrastructure costs, coverage issues in rural areas, and increased security and privacy risks need to be tackled. Additionally, regulatory and policy barriers can hinder the widespread and equitable deployment of 5G.

The findings of this research have significant practical implications for the development and implementation of 5G networks. Collaboration between government and industry is crucial to overcoming financial and logistical barriers, while regulatory support and financial incentives can accelerate the rollout of 5G. Investment in advanced technologies such as millimeter waves, Massive MIMO, and network slicing should be prioritized to maximize network performance and user experience. Developing a comprehensive 5G ecosystem that includes devices, applications, and services is essential for driving adoption and creating new business opportunities. Telecom operators should also focus on uniform infrastructure investment in both urban and rural areas, continuously monitor service quality, and engage in consumer education to enhance public trust and acceptance of 5G technology.

REFERENCES

- [1] T. C. Husnadi, T. Marianti, and T. Ramadhan, "Determination of shareholders' welfare with financing quality as a moderating variable," *APTISI Transactions on Management (ATM)*, vol. 6, no. 2, pp. 191–208, 2022.
- [2] D. Apriani, R. Afrijaldi, N. Auliya, and A. A. Darmawan, "Operating system and server integration for business effectiveness," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 5, no. 2, pp. 91–99, 2024.
- [3] Y. S. Dewi, "Influence of type and dose of coagulants on vehicle wash wastewater," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 8–16, 2024.
- [4] R. G. Munthe, Q. Aini, N. Lutfiani, I. Van Persie, and A. Ramadan, "Transforming scientific publication management in the era of disruption: Smartpls approach in innovation and efficiency analysis," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 123–130, 2024.
- [5] A. Kristian, T. S. Goh, A. Ramadan, A. Erica, and S. V. Sihotang, "Application of ai in optimizing energy and resource management: Effectiveness of deep learning models," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 99–105, 2024.
- [6] E. E. Djajasasana and J. R. K. Bokau, "Utilization of micro influencers and engagement in social media to gain cadet candidates," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 1–7, 2024.
- [7] Y. Shino, F. Utami, and S. Sukmaningsih, "Economic preneur's innovative strategy in facing the economic crisis," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 5, no. 2, pp. 117–126, 2024.
- [8] N. S. Ainy, I. Mujadid, N. Hadi, and L. Sjahfirdi, "Increase in the abundance of invasive fish species in the ciliwung river, dki jakarta and west java provinces," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 17–31, 2024.
- [9] T. Williams, E. Kallas, E. Garcia, A. Fitzroy, and P. Sithole, "International business expansion strategies: A data-driven approach with ibm spss," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 131–138, 2024.
- [10] R. Sivaraman, M. H. Lin, M. I. C. Vargas, S. I. S. Al-Hawary, U. Rahardja, F. A. H. Al-Khafaji, E. V. Golubtsova, and L. Li, "Multi-objective hybrid system development: To increase the performance of diesel/photovoltaic/wind/battery system," *Mathematical Modelling of Engineering Problems*, vol. 11, no. 3, 2024.

- [11] P. A. Oganda and R. F. Terizla, "Strategic management practices in dynamic business environments," *APTISI Transactions on Management*, vol. 8, no. 1, pp. 24–31, 2024.
- [12] U. Rusilowati, H. R. Ngemba, R. W. Anugrah, A. Fitriani, and E. D. Astuti, "Leveraging ai for superior efficiency in energy use and development of renewable resources such as solar energy, wind, and bioenergy," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 114–120, 2024.
- [13] A. Kristian, A. Supriyadi, R. S. Sean, A. Husain *et al.*, "Exploring the relationship between financial competence and entrepreneurial ambitions in digital business education," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 139–145, 2024.
- [14] J. Hom, B. Anong, K. B. Rii, L. K. Choi, and K. Zelina, "The octave allegro method in risk management assessment of educational institutions," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 2, no. 2, pp. 167–179, 2020.
- [15] M. Hardini, Q. Aini, U. Rahardja, R. D. Izzaty, and A. Faturahman, "Ontology of education using blockchain: Time based protocol," in 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS). IEEE, 2020, pp. 1–5.
- [16] T. Syafira, S. Jackson, and A. Tambunan, "Fintech integration with crowdfunding and blockchain in industry 4.0 era," *Startupreneur Business Digital (SABDA Journal)*, vol. 3, no. 1, pp. 10–18, 2024.
- [17] A. Sumanri, M. Mansoer, U. A. Matin *et al.*, "Exploring the influence of religious institutions on the implementation of technology for stunting understanding," *Aptisi Transactions on Technopreneurship* (*ATT*), vol. 6, no. 1, pp. 1–12, 2024.
- [18] L. W. Ming, J. Anderson, F. Hidayat, F. D. Yulian, and N. Septiani, "Ai as a driver of efficiency in waste management and resource recovery," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 128–134, 2024.
- [19] M. Pereira, I. Guvlor *et al.*, "Implementation of artificial intelligence framework to enhance human resources competency in indonesia," *International Journal of Cyber and IT Service Management*, vol. 4, no. 1, pp. 64–70, 2024.
- [20] R. Aprianto, A. Famalika, I. Idayati, I. N. Hikam *et al.*, "Examining influencers role in tiktok shop's promotional strategies and consumer purchases," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 13–28, 2024.
- [21] P. Sithole, E. Zirolla, and S. Lowel, "Artificial intelligence in literacy libraries a review of the literature," *International Journal of Cyber and IT Service Management*, vol. 4, no. 1, pp. 58–63, 2024.
- [22] B. E. Sibarani, C. Anggreani, B. Artasya, and D. A. P. Harahap, "Unraveling the impact of self-efficacy, computer anxiety, trait anxiety, and cognitive distortions on learning mind your own business: The student perspective," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 29–40, 2024.
- [23] L. Kask, N. Bloom, and R. Porta, "Health informatics: Utilization of information technology in health care and patient management," *International Journal of Cyber and IT Service Management*, vol. 4, no. 1, pp. 52–57, 2024.
- [24] K. A. A. Manurung, H. Siregar, I. Fahmi, and D. B. Hakim, "Value chain and esg performance as determinants of sustainable lending in commercial bank: A systematic literature review," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 41–55, 2024.
- [25] F. Mulyanto, A. Purbasari *et al.*, "Solusi arsitektur berbasis blockchain untuk manajemen rantai pasokan yang transparan," *Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi*, vol. 2, no. 2, pp. 197–206, 2024.
- [26] M. Yusuf, M. Yusup, R. D. Pramudya, A. Y. Fauzi, and A. Rizky, "Enhancing user login efficiency via single sign-on integration in internal quality assurance system (espmi)," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 164–172, 2024.
- [27] S. Wijaya, A. Husain, M. Laurens, and A. Birgithri, "ilearning education challenge: Combining the power of blockchain with gamification concepts," *CORISINTA*, vol. 1, no. 1, pp. 8–15, 2024.
- [28] E. N. Pratama, E. Suwarni, and M. A. Handayani, "The effect of job satisfaction and organizational commitment on turnover intention with person organization fit as moderator variable," *Aptisi Transactions on Management*, vol. 6, no. 1, pp. 74–82, 2022.
- [29] C. S. Bangun, S. Purnama, and A. S. Panjaitan, "Analysis of new business opportunities from online informal education mediamorphosis through digital platforms," *International Transactions on Education Technology*, vol. 1, no. 1, pp. 42–52, 2022.
- [30] Q. Aini, D. Manongga, U. Rahardja, I. Sembiring, and Y. M. Li, "Understanding behavioral intention to

- use of air quality monitoring solutions with emphasis on technology readiness," *International Journal of Human–Computer Interaction*, pp. 1–21, 2024.
- [31] I. Sembiring, U. Rahardja, D. Manongga, Q. Aini, and A. Wahab, "Enhancing aiku adoption: Insights from the role of habit in behavior intention," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 84–108, 2024.
- [32] I. Handayani, R. Agustina *et al.*, "Starting a digital business: Being a millennial entrepreneur innovating," *Startupreneur Business Digital (SABDA Journal)*, vol. 1, no. 2, pp. 126–133, 2022.
- [33] Q. Aini, N. Lutfiani, and M. S. Zahran, "Analisis gamifikasi ilearning berbasis teknologi blockchain," *ADI Bisnis Digital Interdisiplin Jurnal*, vol. 2, no. 1 Juni, pp. 79–85, 2021.
- [34] M. Yusup, Q. Aini, and K. D. Pertiwi, "Media audio visual menggunakan videoscribe sebagai penyajian informasi pembelajaran pada kelas sistem operasi," *Technomedia Journal*, vol. 1, no. 1 Agustus, pp. 126–138, 2016.
- [35] R. Widayanti and L. Meria, "Business modeling innovation using artificial intelligence technology," *International Transactions on Education Technology*, vol. 1, no. 2, pp. 95–104, 2023.
- [36] A. Erica, L. Gantari, O. Qurotulain, A. Nuche, and O. Sy, "Optimizing decision-making: Data analytics applications in management information systems," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 115–122, 2024.