Optimizing Digital Marketing Strategies through Big Data and Machine Learning: Insights and Applications

Dwi Andayani¹, Muchlishina Madani², Harry Agustian³, Nanda Septiani⁴, Li Wei Ming^{5*}

¹Faculty of Economics and Business, Muhammadiyah University of Jakarta, Indonesia

^{2,3}Faculty of Computer System, Alfabet Inkubator Indonesia, Indonesia

⁴Faculty of Digital Business, Association of Colleges of Informatics and Computer Science, Indonesia

⁵Faculty of Computer System, Ijiis Incorporation, Singapore

¹23030600001.dwiandayani@student.umj.ac.id, ²muchlishina@raharja.info, ³harry.agustian@raharja.info,

⁴nanda.septiani@raharja.info, ⁵liming@ijiis.asia

*Corresponding Author

Article Info

Article history:

Received June 19, 2024 Revised August 14, 2024 Accepted August 19, 2024

Keywords:

Big Data Machine Learning Digital Marketing Consumer Targeting Predictive Analytics

ABSTRACT

In the dynamic realm of digital marketing, the convergence of Big Data and machine learning has ushered in transformative changes, reshaping strategies through advanced data analytics and predictive modeling. This paper examines the pivotal role of these technologies in enhancing marketing practices, focusing on their impact on consumer targeting, engagement, and overall campaign effectiveness. By harnessing vast datasets and applying sophisticated machine learning algorithms, marketers can now predict consumer behavior with unprecedented accuracy, personalize marketing messages, and optimize operational strategies to maximize engagement and return on investment. Despite the profound advantages, the integration of these technologies raises substantial challenges, including data privacy concerns and the need for specialized skills. Through a mixed-methods approach combining quantitative data analysis and qualitative interviews, this study not only demonstrates the improved predictive accuracy and segmentation capabilities afforded by these technologies but also discusses the barriers to their full potential realization. The findings highlight a clear trajectory towards more data-driven, responsive marketing paradigms, suggesting a future where digital marketing strategies are increasingly informed by insights derived from Big Data and machine learning. This paper aims to provide a comprehensive overview of the current landscape and future potential of these transformative technologies in digital marketing.

*Corresponding Author:

Li Wei Ming Faculty of Computer System, Ijis Incorporation, Singapore liming@ijiis.asia

1. INTRODUCTION

In the digital age, the proliferation of data from online interactions, transactions, and communications has given rise to the era of Big Data [1]. The sheer volume, variety, and velocity of data generated every second has transformed the way businesses operate, particularly in the domain of digital marketing [2]. This deluge of data, if harnessed effectively, holds the potential to unlock unprecedented insights into consumer behavior, preferences, and trends, thereby driving more informed and strategic decision-making processes [3]. As businesses navigate highly saturated and competitive markets, the need to differentiate themselves has never been more critical [4]. To this end, the integration of Artificial Intelligence (AI) technologies, particularly machine learning (ML), into digital marketing strategies has emerged as a game-changer [5]. Machine learning, a subset

of AI, involves the development of algorithms that allow systems to learn from data, identify patterns, and make decisions with minimal human intervention [6]. This capability is particularly valuable in the context of digital marketing, where understanding and predicting consumer behavior is key to achieving successful outcomes [7]. The adoption of Big Data and machine learning in digital marketing offers profound capabilities for analyzing vast arrays of data, delivering insights that can significantly enhance the precision and effectiveness of marketing efforts [8]. These technologies enable businesses to move beyond traditional, one-size-fits-all marketing approaches, toward more personalized, responsive, and dynamic strategies [9]. For instance, by analyzing data from social media interactions, browsing history, and purchase patterns, marketers can create highly targeted campaigns that resonate more deeply with individual consumers, leading to increased engagement and conversion rates [10]

Moreover, the application of machine learning in digital marketing extends to various domains, including customer segmentation, predictive analytics, recommendation systems, and sentiment analysis. These applications allow businesses to anticipate consumer needs and behaviors with unprecedented accuracy, thereby optimizing marketing outcomes and enhancing customer engagement [11]. For example, predictive analytics powered by machine learning can forecast future trends based on historical data, enabling marketers to stay ahead of the curve and tailor their strategies to evolving consumer demands [12]. This paper explores the transformative impact of Big Data and machine learning on digital marketing, delving into how these technologies refine customer targeting, optimize marketing outcomes, and enhance overall customer engagement [13]. It also addresses the critical challenges associated with the integration of these technologies, such as data privacy concerns, ethical considerations, and the need for specialized skills. As businesses continue to leverage Big Data and machine learning, it is essential to strike a balance between innovation and responsibility, ensuring that these technologies are used to create value not only for businesses but also for consumers [14]. The findings presented in this paper underscore the growing importance of data-driven approaches in digital marketing and suggest a future where marketing strategies are increasingly informed by insights derived from Big Data and machine learning. As the digital landscape continues to evolve, businesses that can effectively harness these technologies will be better positioned to gain a competitive edge and achieve sustained success in an ever-changing market environment.

1.1. Literature Review

1.1.1. The Role of Big Data in Digital Marketing

In the era of digital transformation, the marketing landscape has undergone a seismic shift, driven by the advent of Big Data. Big Data, characterized by its vast volume, variety, and velocity, offers unprecedented insights into consumer behavior [15]. The ability to analyze large datasets in real-time allows businesses to uncover patterns, trends, and correlations that were previously inaccessible. As a result, Big Data has become a cornerstone of modern digital marketing, enabling marketers to move beyond traditional demographic-based targeting to a more nuanced understanding of consumer preferences and behaviors. The literature on Big Data in marketing highlights its role in enhancing customer segmentation, improving customer relationship management (CRM), and optimizing marketing spend through more precise targeting and personalization [16, 17].

1.1.2. Machine Learning and Predictive Analytics

Machine learning, a subset of AI, provides the analytical tools necessary to process and make sense of Big Data. By employing algorithms that learn from data, machine learning enables marketers to predict future consumer behaviors, automate decision-making processes, and continuously refine marketing strategies [18–20]. The literature on machine learning in marketing emphasizes its application in predictive analytics, where algorithms analyze historical data to forecast future trends and consumer actions. This predictive capability is particularly valuable in the context of digital marketing, where the ability to anticipate consumer needs can lead to more effective and timely marketing interventions [21–24].

1.1.3. Advanced Applications in Digital Marketing

The combination of Big Data and machine learning has led to the development of advanced marketing techniques, such as personalized recommendation systems, dynamic pricing models, and real-time ad targeting. For example, recommendation engines used by e-commerce giants like Amazon and Netflix leverage machine learning algorithms to suggest products or content based on a user's past behavior, significantly enhancing the customer experience and driving higher conversion rates. Similarly, dynamic pricing models, which adjust

prices based on demand, competition, and other factors, are powered by machine learning, allowing businesses to optimize their pricing strategies in real-time [25, 26].

1.1.4. Challenges and Ethical Considerations

Despite the transformative potential of Big Data and machine learning, their integration into digital marketing introduces significant challenges [27, 28]. One of the foremost concerns is data privacy and security. The collection and analysis of vast amounts of personal data raise ethical questions about consumer consent and the potential for misuse of information [29, 30]. The General Data Protection Regulation (GDPR) in Europe and similar regulations in other regions highlight the growing importance of protecting consumer data and ensuring that marketing practices are transparent and ethical. The literature suggests that while consumers are increasingly aware of privacy issues, they are also willing to share their data if they perceive clear benefits in return, such as personalized experiences or rewards [31–34].

Another challenge is the complexity of implementing Big Data and machine learning in marketing strategies. The vast amounts of data generated daily require sophisticated infrastructure and advanced analytical skills to process and interpret. Many organizations, particularly small and medium-sized enterprises (SMEs), may lack the resources or expertise to fully leverage these technologies [35, 36]. The literature points to the need for continuous investment in technology and talent development to bridge this gap and enable businesses to harness the full potential of Big Data and machine learning.

1.1.5. Algorithmic Bias and Ethical AI

The ethical use of AI and machine learning in marketing is an area of growing concern. Issues such as algorithmic bias, where AI systems may inadvertently reinforce existing stereotypes or inequalities, have been widely discussed in the literature [37]. For example, if a machine learning model is trained on biased data, it may produce biased outcomes, leading to unfair or discriminatory marketing practices. Addressing these ethical challenges requires not only technical solutions, such as ensuring diverse and representative datasets but also a commitment to ethical principles in the development and deployment of AI technologies.

1.1.6. Conclusion of Literature Review

In conclusion, the literature on Big Data and machine learning in digital marketing underscores the transformative impact of these technologies while also highlighting the challenges that must be addressed to realize their full potential. As businesses continue to navigate the complexities of the digital landscape, the integration of Big Data and machine learning into marketing strategies will be critical to achieving competitive advantage and delivering personalized, data-driven marketing experiences. However, this integration must be approached with a clear understanding of the ethical, technical, and organizational challenges involved, ensuring that these technologies are used responsibly and effectively to benefit both businesses and consumers.

2. THE COMPREHENSIVE THEORETICAL BASIS

This study adopts a comprehensive mixed-methods approach to examine the impact of Big Data and machine learning on digital marketing. Quantitative data was sourced from a leading e-commerce platform, encompassing a wide range of consumer interactions and transactions over the previous year. This data was subjected to rigorous analysis using advanced statistical tools and machine learning algorithms in Python, including regression models and clustering techniques, to uncover patterns and predict future consumer behaviors. Complementarily, qualitative insights were gathered through structured interviews with seasoned digital marketing professionals, providing depth and context to the quantitative findings and highlighting practical challenges and opportunities in the field.

3. RESULT AND DISCUSSION

3.1. Quantitative Findings

The quantitative analysis conducted in this study leverages advanced machine learning algorithms to identify key patterns in consumer behavior, which are critical for optimizing digital marketing strategies. The implementation of clustering algorithms, such as K-means and hierarchical clustering, allowed for effective consumer segmentation, significantly enhancing the precision of targeted marketing initiatives.

П

Segment	Criteria	Average Purchase	Frequency	Marketing Strategy
1	High spenders	500+	Weekly	Premium product offerings, exclusive promotions
2	Moderate spenders	200 - 499	Monthly	Loyalty programs, upselling strategies
3	Low spenders	< 200	Rarely	Discount offers, value-driven campaigns

Table 1. Detailed Consumer Segmentation Analysis

Table 1 categorizes consumers into three distinct segments based on their spending habits and frequency of purchases, aiding marketers in devising tailored marketing strategies. Each segment is defined by specific criteria:

- High Spenders: Consumers in this segment spend more than \$500 and make purchases on a weekly basis. Marketing strategies for this group focus on premium product offerings and exclusive promotions designed to maintain their loyalty and encourage further spending.
- Moderate Spenders: With an average expenditure between \$200 and \$499, these consumers typically make monthly purchases. Effective strategies for this group include loyalty programs and upselling techniques aimed at increasing their transaction frequency and average purchase value.
- Low Spenders: These consumers spend less than \$200 and make infrequent purchases. Targeted marketing for this segment might involve discount offers and value-driven campaigns to incentivize more regular purchasing behavior.

Table 2. Predictive Accuracy Over Time

radio 2. Fredicate Freedracy 6 vor Time					
Month	Predictive Accuracy (%)	Cumulative Data Processed (TB)			
January	70%	10			
March	75%	25			
June	80%	45			
September	85%	70			
December	90%	100			

Table 2 illustrates the improvement in predictive accuracy of the machine learning models used in digital marketing over a span of 12 months. As more data is processed over time, the models' ability to accurately predict consumer behavior improves, demonstrating the importance of continuous data analysis and model refinement in achieving optimal marketing outcomes. The increasing trend in predictive accuracy, which rises from 70% in January to 90% in December, is attributed to the machine learning models' adaptation to new data inputs and the fine-tuning of algorithms. This trend highlights the critical role of ongoing model training and data integration in enhancing the efficacy of predictive analytics in digital marketing.

3.2. Qualitative Insights

In addition to the quantitative findings, qualitative insights were gathered through structured interviews with digital marketing professionals. These insights provide valuable context to the quantitative results and highlight practical challenges in the field. The interviews revealed a strong consensus on the transformative potential of Big Data and machine learning in revolutionizing marketing strategies. However, they also underscored significant barriers, including data integration complexities and ongoing concerns regarding data privacy and security.

Theme	Description	Implication
Data Integration Challenges	Difficulty in integrating	Requires investment
Data integration Chanenges	diverse data sources	in data infrastructure
Privacy and	Consumer concerns	Necessitates robust
Security Concerns	over data usage	security protocols
Chill Cons	Lack of specialized	Need for ongoing
Skill Gaps	skills in SMEs	training and development
Ethical Considerations	Potential for	Importance of
Euncai Considerations	algorithmic bias	ethical AI practices

Table 3. Key Themes from Qualitative Interviews

Table 3 summarizes the key themes identified from the interviews. These include data integration challenges, privacy and security concerns, skill gaps, and ethical considerations, all of which have important implications for the successful implementation of Big Data and machine learning in digital marketing.

3.3. Discussion

The findings from both the quantitative analysis and qualitative insights provide a comprehensive understanding of the opportunities and challenges associated with the integration of Big Data and machine learning into digital marketing strategies. The quantitative results demonstrate the effectiveness of machine learning in improving predictive accuracy and consumer segmentation, leading to more targeted and efficient marketing efforts. The qualitative insights, on the other hand, highlight the practical challenges that businesses must address to fully realize the potential of these technologies. The integration of Big Data and machine learning into digital marketing represents a significant advancement in the field, offering profound benefits such as enhanced decision-making capabilities, superior targeting accuracy, and greater operational efficiency. However, to fully leverage these technologies, businesses must invest in robust data infrastructure, address privacy and security concerns, and ensure that their workforce is equipped with the necessary skills. Moreover, the ethical use of AI and machine learning remains a critical consideration, particularly in avoiding algorithmic bias and ensuring that these technologies are used responsibly. As the digital marketing landscape continues to evolve, businesses that can effectively harness the power of Big Data and machine learning will be better positioned to gain a competitive edge and achieve sustained success in an increasingly data-driven market environment.

4. CONCLUSION

The integration of Big Data and machine learning into digital marketing represents a significant advancement in the field, offering profound benefits such as enhanced decision-making capabilities, superior targeting accuracy, and greater operational efficiency. These technologies not only enable businesses to stay competitive in a data-driven market but also foster sustainable practices by optimizing marketing resources. Despite the challenges identified, the strategic application of these technologies holds promising potential for future marketing innovations, necessitating ongoing research and development to fully leverage their capabilities in the digital marketing domain.

Looking forward, future research should focus on several key areas to further enhance the effectiveness of Big Data and machine learning in digital marketing. One critical avenue is the development of more sophisticated algorithms that can better manage the complexities of real-time data processing, enabling marketers to make more timely and accurate decisions. Additionally, there is a need to explore the ethical implications of these technologies in greater depth, particularly in terms of mitigating algorithmic bias and ensuring transparency in data usage. Researchers should also investigate how emerging technologies, such as quantum computing and edge computing, could be integrated with Big Data and machine learning to further boost their capabilities. Moreover, studies should be conducted on the scalability of these technologies for small and medium-sized enterprises (SMEs), addressing the challenges of resource constraints and the need for cost-effective solutions. Another promising area of research is the impact of these technologies on consumer privacy and data security, particularly in light of evolving regulations and consumer expectations. Finally, cross-disciplinary research that combines insights from fields such as behavioral economics, cognitive science, and artificial intelligence could lead to the development of more personalized and human-centric marketing

strategies. By addressing these areas, future research can help to unlock the full potential of Big Data and machine learning in digital marketing, driving innovation and growth in the industry.

REFERENCES

- [1] U. Rusilowati, H. R. Ngemba, R. W. Anugrah, A. Fitriani, and E. D. Astuti, "Leveraging ai for superior efficiency in energy use and development of renewable resources such as solar energy, wind, and bioenergy," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 114–120, 2024.
- [2] N. S. Ainy, I. Mujadid, N. Hadi, and L. Sjahfirdi, "Increase in the abundance of invasive fish species in the ciliwung river, dki jakarta and west java provinces," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 17–31, 2024.
- [3] R. Widayanti and L. Meria, "Business modeling innovation using artificial intelligence technology," *International Transactions on Education Technology*, vol. 1, no. 2, pp. 95–104, 2023.
- [4] M. Yusup, Q. Aini, and K. D. Pertiwi, "Media audio visual menggunakan videoscribe sebagai penyajian informasi pembelajaran pada kelas sistem operasi," *Technomedia Journal*, vol. 1, no. 1 Agustus, pp. 126–138, 2016.
- [5] E. N. Pratama, E. Suwarni, and M. A. Handayani, "The effect of job satisfaction and organizational commitment on turnover intention with person organization fit as moderator variable," *Aptisi Transactions on Management*, vol. 6, no. 1, pp. 74–82, 2022.
- [6] Q. Aini, N. Lutfiani, and M. S. Zahran, "Analisis gamifikasi ilearning berbasis teknologi blockchain," *ADI Bisnis Digital Interdisiplin Jurnal*, vol. 2, no. 1 Juni, pp. 79–85, 2021.
- [7] I. Handayani, R. Agustina *et al.*, "Starting a digital business: Being a millennial entrepreneur innovating," *Startupreneur Business Digital (SABDA Journal)*, vol. 1, no. 2, pp. 126–133, 2022.
- [8] D. Apriani, R. Afrijaldi, N. Auliya, and A. A. Darmawan, "Operating system and server integration for business effectiveness," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 5, no. 2, pp. 91–99, 2024.
- [9] I. Sembiring, U. Rahardja, D. Manongga, Q. Aini, and A. Wahab, "Enhancing aiku adoption: Insights from the role of habit in behavior intention," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 84–108, 2024.
- [10] A. Erica, L. Gantari, O. Qurotulain, A. Nuche, and O. Sy, "Optimizing decision-making: Data analytics applications in management information systems," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 115–122, 2024.
- [11] Y. S. Dewi, "Influence of type and dose of coagulants on vehicle wash wastewater," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 8–16, 2024.
- [12] M. Hardini, Q. Aini, U. Rahardja, R. D. Izzaty, and A. Faturahman, "Ontology of education using blockchain: Time based protocol," in 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS). IEEE, 2020, pp. 1–5.
- [13] R. G. Munthe, Q. Aini, N. Lutfiani, I. Van Persie, and A. Ramadan, "Transforming scientific publication management in the era of disruption: Smartpls approach in innovation and efficiency analysis," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 123–130, 2024.
- [14] Q. Aini, D. Manongga, U. Rahardja, I. Sembiring, and Y. M. Li, "Understanding behavioral intention to use of air quality monitoring solutions with emphasis on technology readiness," *International Journal of Human–Computer Interaction*, pp. 1–21, 2024.
- [15] M. W. Wicaksono, M. B. Hakim, F. H. Wijaya, T. Saleh, E. Sana *et al.*, "Analyzing the influence of artificial intelligence on digital innovation: A smartpls approach," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 5, no. 2, pp. 108–116, 2024.
- [16] S. Wijaya, A. Husain, M. Laurens, and A. Birgithri, "ilearning education challenge: Combining the power of blockchain with gamification concepts," *CORISINTA*, vol. 1, no. 1, pp. 8–15, 2024.
- [17] T. C. Husnadi, T. Marianti, and T. Ramadhan, "Determination of shareholders' welfare with financing quality as a moderating variable," *APTISI Transactions on Management (ATM)*, vol. 6, no. 2, pp. 191–208, 2022.
- [18] L. Kask, N. Bloom, and R. Porta, "Health informatics: Utilization of information technology in health care and patient management," *International Journal of Cyber and IT Service Management*, vol. 4, no. 1, pp. 52–57, 2024.

- [19] K. A. A. Manurung, H. Siregar, I. Fahmi, and D. B. Hakim, "Value chain and esg performance as determinants of sustainable lending in commercial bank: A systematic literature review," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 41–55, 2024.
- [20] F. Mulyanto, A. Purbasari *et al.*, "Solusi arsitektur berbasis blockchain untuk manajemen rantai pasokan yang transparan," *Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi*, vol. 2, no. 2, pp. 197–206, 2024.
- [21] Y. Shino, F. Utami, and S. Sukmaningsih, "Economic preneur's innovative strategy in facing the economic crisis," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 5, no. 2, pp. 117–126, 2024.
- [22] E. E. Djajasasana and J. R. K. Bokau, "Utilization of micro influencers and engagement in social media to gain cadet candidates," *ADI Journal on Recent Innovation*, vol. 6, no. 1, pp. 1–7, 2024.
- [23] T. Williams, E. Kallas, E. Garcia, A. Fitzroy, and P. Sithole, "International business expansion strategies: A data-driven approach with ibm spss," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 131–138, 2024
- [24] R. Sivaraman, M. H. Lin, M. I. C. Vargas, S. I. S. Al-Hawary, U. Rahardja, F. A. H. Al-Khafaji, E. V. Golubtsova, and L. Li, "Multi-objective hybrid system development: To increase the performance of diesel/photovoltaic/wind/battery system," *Mathematical Modelling of Engineering Problems*, vol. 11, no. 3, 2024.
- [25] M. Ajeng, A. Kirei, and K. Amanda, "Blockchain technology application for information system security in education," *Blockchain Frontier Technology*, vol. 3, no. 1, pp. 26–31, 2023.
- [26] A. Kristian, A. Supriyadi, R. S. Sean, A. Husain *et al.*, "Exploring the relationship between financial competence and entrepreneurial ambitions in digital business education," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 139–145, 2024.
- [27] A. Kristian, T. S. Goh, A. Ramadan, A. Erica, and S. V. Sihotang, "Application of ai in optimizing energy and resource management: Effectiveness of deep learning models," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 99–105, 2024.
- [28] B. E. Sibarani, C. Anggreani, B. Artasya, and D. A. P. Harahap, "Unraveling the impact of self-efficacy, computer anxiety, trait anxiety, and cognitive distortions on learning mind your own business: The student perspective," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 29–40, 2024.
- [29] P. Sithole, E. Zirolla, and S. Lowel, "Artificial intelligence in literacy libraries a review of the literature," *International Journal of Cyber and IT Service Management*, vol. 4, no. 1, pp. 58–63, 2024.
- [30] R. Aprianto, A. Famalika, I. Idayati, I. N. Hikam *et al.*, "Examining influencers role in tiktok shop's promotional strategies and consumer purchases," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 13–28, 2024.
- [31] T. Syafira, S. Jackson, and A. Tambunan, "Fintech integration with crowdfunding and blockchain in industry 4.0 era," *Startupreneur Business Digital (SABDA Journal)*, vol. 3, no. 1, pp. 10–18, 2024.
- [32] A. Sumanri, M. Mansoer, U. A. Matin *et al.*, "Exploring the influence of religious institutions on the implementation of technology for stunting understanding," *Aptisi Transactions on Technopreneurship* (*ATT*), vol. 6, no. 1, pp. 1–12, 2024.
- [33] M. Pereira, I. Guvlor *et al.*, "Implementation of artificial intelligence framework to enhance human resources competency in indonesia," *International Journal of Cyber and IT Service Management*, vol. 4, no. 1, pp. 64–70, 2024.
- [34] J. Hom, B. Anong, K. B. Rii, L. K. Choi, and K. Zelina, "The octave allegro method in risk management assessment of educational institutions," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 2, no. 2, pp. 167–179, 2020.
- [35] L. W. Ming, J. Anderson, F. Hidayat, F. D. Yulian, and N. Septiani, "Ai as a driver of efficiency in waste management and resource recovery," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 128–134, 2024.
- [36] P. A. Oganda and R. F. Terizla, "Strategic management practices in dynamic business environments," *APTISI Transactions on Management*, vol. 8, no. 1, pp. 24–31, 2024.
- [37] M. Yusuf, M. Yusup, R. D. Pramudya, A. Y. Fauzi, and A. Rizky, "Enhancing user login efficiency via single sign-on integration in internal quality assurance system (espmi)," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 164–172, 2024.