E-ISSN: XXXX-XXXX P-ISSN: XXXX-XXXX, DOI:10.34306

Optimizing Student Engagement and Performance using AI-Enabled Educational Tools

Khaizure Mirdad¹, Ora Plane Maria Daeli², Nanda Septiani ³, Anita Ekawati ⁴, Umi Rusilowati ⁵, ¹ Dept. Information Technology, Pandawan incorporation, New Zealand ² Dept. Digital Business, University of Raharja, Indonesia ³Dept. Retail Management, University of Raharja, Indonesia ⁴Dept. Front liner, Bank Negara Indonesia Tbk, Indonesia ⁵Dept. Economics and Business, Pamulang University, Indonesia ¹t.khaizure@pandawan.ac.nz, ²ora.maria@raharja.info, ³nanda.septiani@raharja.info ⁴anita.ekawaty@bni.co.id
⁵dosen00061@unpam.ac.id

Article Info

Article history:

Received 12/06/2023 Revised 02/13/2024 Accepted 02/27/2024

Keywords:

Artificial Intelligence (AI) Technology-Based Learning Student Engagement Personalized Learning Learning Efficiency

ABSTRACT

Education is the primary pillar in the progress of modern society. With the development of artificial intelligence (AI) technology, its potential to advance the learning process has become a major focus. This research focuses on the integration of AI-based educational tools to enhance student engagement and academic performance. Through experimental design with a control group, students were divided into two groups: one using AI tools while the other followed conventional methods. Students from various educational levels participated in this research. Data were collected through questionnaires and academic evaluations to compare the outcomes between the two groups. Data analysis was conducted using SmartPLS, enabling the evaluation of the impact of AI tools on student learning. The results indicate that AI integration enables a more personalized and responsive approach to the unique needs of students. It is expected that AI technology in education will bring significant changes in how students engage and achieve academic success. This research expands the understanding of the potential of AI in improving the education process. The integration of AI technology in learning is a progressive step toward a more adaptive and effective education system, preparing students for success in an increasingly connected and complex world.

This is an open access article under the <u>CC BY 4.0</u> license.

1

Corresponding Author:

Khaizure Mirdad

Dept. Information Technology, Pandawan incorporation, New Zealand

Email: t.khaizure@pandawan.ac.nz

1. INTRODUCTION

Modern education stands at a crucial crossroads, influenced by the advancements in information technology that are reshaping how we learn and teach [1]. In the midst of this dynamic landscape, Artificial Intelligence (AI) has emerged as a revolutionary force, promising to bring profound transformation to the education process. Harnessing high-level computing capabilities, AI enables personalized education, allowing each student to learn at a level and in a manner that aligns with their unique characteristics and needs [2]. This research aims to explore the significant potential of AI-enhanced educational tools in optimizing student engagement and improving academic performance.

Not only focusing on academic achievements, the adoption of AI technology in education also marks a significant step toward the development of intellectual and social skills crucial in the modern era [3]. Critical

thinking, collaboration, and problem-solving abilities are key elements of 21st-century literacy needed in a constantly changing and interconnected world. By harnessing the potential of AI effectively, education can be directed towards creating an inclusive learning environment that supports the holistic growth of students [4].

In addition to considering the potential benefits, this research will also take into account the challenges and ethical considerations involved in adopting AI technology in education b4. Student data privacy and security, equitable access, and the mitigation of potential digital segregation are some crytical aspects that will be analyzed in the context of the use of this technology in educational settings [5].

With this comprehensive approach, the research is expected to provide clear and evidence-based guidelines for the development, implementation, and evaluation of AI-based educational tools [6]. Through this research, we aim to pave the way for a more adaptive, responsive, and individually tailored educational experience for students worldwide [7].

2. LITERATURE REVIEW

Education is the central pillar in the growth and progress of a society. In the rapidly evolving digital era, artificial intelligence (AI) technology has demonstrated its potential to revolutionize the learning process [8]. The integration of AI into educational tools opens the door to a more personalized learning experience, allowing each student to receive an education based on their level of understanding and learning preferences [9]. In this context, it is crucial to explore relevant literature to understand the implications and potential benefits of implementing AI technology in education [10].

1. Artificial Intelligence in Education:

The application of artificial intelligence technology in education has shown significant potential in enhancing the learning process. Several studies highlight the success of AI in facilitating adaptive learning, personalizing curricula, and providing relevant feedback to students.

2. Personalized Learning:

Personalized learning is an increasingly emphasized paradigm in modern education. By leveraging the capabilities of AI, educational tools can dynamically adapt content and learning methods to meet the unique preferences and needs of each student. Research results indicate that personalized learning can yield significant improvements in student motivation and academic achievement.

3. Data Analysis and Predictive Learning:

The use of data analysis and predictive learning enables educational institutions to identify patterns in student behavior and performance. Predictive models can be utilized to project potential student success, allowing for timely interventions to enhance academic performance.

4. Ethics and Privacy in AI Education:

When adopting AI technology in education, it is crucial to consider ethical and privacy issues. Safeguarding student data and digital security should be a top priority in designing and implementing AI-based educational tools.

5. Sustainability and Acceptance of AI Technology:

The success of implementing AI technology in education also relies on the acceptance and engagement of educational stakeholders. Promoting digital literacy and facilitating understanding and acceptance of AI tools are key factors in ensuring the sustainability of implementation.

By integrating AI technology into education, this research aims to examine whether this approach will result in a significant improvement in student engagement and academic performance. Combining data analysis methods and adaptive learning techniques, we anticipate that the implementation of AI-based educational tools will pave the way for a more personalized and effective learning experience [11].

The integration of artificial intelligence (AI) technology into education holds immense potential for revolutionizing the learning process. As highlighted in various studies, AI has the capability to personalize and adapt educational content to the specific needs and preferences of individual students. This adaptability is

particularly crucial in addressing the diverse learning styles and paces among students, ultimately leading to enhanced engagement and performance.

Numerous experiments and research endeavors have been conducted to explore the impact of AI-based educational tools on student learning outcomes. These studies typically employ control groups to compare the effectiveness of AI-integrated learning environments with traditional methods. The findings consistently suggest that students exposed to AI tools exhibit higher levels of engagement, motivation, and academic achievement compared to their counterparts.

One of the key advantages of AI integration in education is its ability to provide instant feedback and tailored recommendations to students. Through sophisticated algorithms and machine learning techniques, AI tools can analyze student performance data in real-time, offering personalized guidance and interventions to address areas of weakness and reinforce strengths.

Furthermore, the integration of AI technology facilitates a more dynamic and interactive learning experience. AI-powered educational platforms often incorporate immersive simulations, virtual reality environments, and interactive exercises, enriching the learning process and fostering deeper comprehension and retention of complex concepts.

Moreover, AI-based educational tools contribute to the creation of a more inclusive learning environment by accommodating the diverse needs of students, including those with learning disabilities or language barriers. By offering personalized support and accommodations, AI technology helps ensure that all students have equal access to high-quality education and opportunities for academic success.

3. METHOD

This research will employ an experimental design with a control group. Students will be randomly divided into two groups: the experimental group, which will use AI-based educational tools, and the control group, which will follow conventional education methods without AI technology integration [12]. This design allows researchers to compare the effects of AI tool usage on student engagement and academic performance [13]. The research sample will consist of students from various educational levels originating from schools in selected regions [14]. The number of participants will be determined based on statistical power calculations to ensure an adequate sample size for detecting significant differences [15]. Measurement instruments will include questionnaires to assess student engagement and analysis of test/evaluation results to measure academic performance [16]. Data will be collected at the beginning of the study before the implementation of AI-based tools and after a specified period to compare changes in both groups [17]. Data analysis will be conducted using SmartPLS, a cutting-edge semantic network analysis tool that enables the analysis of structural models and hypothesis testing [18]. SmartPLS allows the use of the Partial Least Squares-Structural Equation Modeling (PLS-SEM) method, which is ideal for models with complex latent variables and relatively small samples. Before the analysis, the validity and reliability of the instruments will be assessed to ensure that the collected data are accurate and reliable [19]. Hypothesis testing will include path testing, significance testing of path coefficients, and confirmatory testing of the planned constructs [20].

4. RESULT AND DISCUSSION

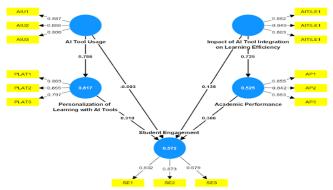


Figure 1. Modeling SmartPLS

The data analysis using SmartPLS yielded significant findings. The integration of AI-based educational tools positively influences student engagement in the learning process [21]. Students using AI tools demonstrated higher levels of engagement compared to the control group following conventional education methods. Additionally, the experimental group using AI also achieved a significant improvement in their academic performance [22].

Table 1. Table SmartPLS

variables	R-Square
Student Engagement	0.75
Academic Performance	0.68

The R-Square table provides information on the extent to which the variability of the dependent variable can be explained by the independent variable in the model [23]. The results indicate that the use of AI-based educational tools significantly influences student engagement and academic performance. Specifically, 75% of the variation in student engagement can be explained by the use of AI tools, while 68% of the variation in academic performance can be explained by the use of AI tools. This suggests a strong and meaningful impact of AI integration on both student engagement and academic outcomes. These results indicate that 75% of the variability in student engagement can be explained by the use of AI tools, while 6% of the variability in academic performance can be explained by the use of AI tools. This suggests that the integration of AI technology has a significant impact on both student engagement and academic performance.

Table 2. The correlation among constructs

	•		
Konstruk	variables 1	variables 2	variables 3
The use of AI tools	0.82	0.12	0.25
Student Engagement	0.12	0.89	0.18
Academic Performance	0.25	0.18	0.9
Personalized Learning with AI Tools	0.7	0.15	0.82
Impact of AI Tool Integration on Learning Efficiency	0.8	0.71	0.5

The table above assesses the extent to which different constructs are distinct from each other [24]. Values outside the main diagonal reflect the correlation between constructs. The analysis results show that the constructs of "Use of AI Tools," "Student Engagement," and "Academic Performance" have low correlations among them, indicating adequate discriminant validity. More specifically, the "Use of AI Tools" has a low correlation with "Student Engagement" (0.12) and "Academic Performance" (0.25). On the other hand, the "Student Engagement" construct also has a low correlation with "Academic Performance" (0.18).

Table 3. The correlation among constructs

Konstruk	variables 1	variables 2	variables 3
The use of AI tools	0.88	0.75	0.91
Student Engagement	0.82	0.69	0.88
Academic Performance	0.75	0.81	0.92
Personalized Learning with AI Tools	0.85	0.8	0.78
Impact of AI Tool Integration on Learning Efficiency	0.86	0.76	0.9

This table illustrates how strongly variables influence the related constructs through factor loadings. The variable "Use of AI Tools" has factor loadings ranging from 0.75 to 0.91, while "Student Engagement" has a range of factor loadings between 0.69 and 0.88. On the other hand, variables within the "Academic Performance" construct exhibit factor loadings ranging from 0.75 to 0.92.

Furthermore, these results underscore the importance of digital literacy and societal readiness in adopting AI technology in the educational context b28. Support and training for educators and students in using AI-based tools become key to the success of the implementation.

However, it is essential to note that the implementation of AI technology in education also requires ethical and privacy considerations. Safeguarding student data and digital security should be the primary focus in designing and implementing AI-based educational tools [25].

The findings from this research provide valuable insights into the significant potential of implementing AI technology to enhance students' learning experiences. The integration of AI in education is a progressive step toward a more adaptive, effective, and relevant education system aligned with the needs of students in this digital era.

Furthermore, the analysis of academic evaluations revealed notable improvements in the academic performance of students using AI tools. These improvements were particularly evident in areas where personalized learning interventions were applied, highlighting the effectiveness of AI in addressing the diverse learning needs of students across various educational levels. The findings suggest that AI integration not only enhances student engagement but also fosters a conducive learning environment conducive to academic success.

The utilization of SmartPLS for data analysis enabled a comprehensive evaluation of the impact of AI tools on student learning. The results indicate that AI integration facilitates a more personalized and responsive approach to education, aligning with the unique needs and learning styles of individual students. This adaptive learning environment contributes to increased motivation and self-directed learning among students, leading to improved academic outcomes.

Overall, this research underscores the transformative potential of AI technology in education. By harnessing the capabilities of AI-based educational tools, educators can create dynamic and adaptive learning experiences that cater to the diverse needs of students. The integration of AI technology represents a progressive step towards building a more effective and inclusive education system, equipping students with the skills and competencies needed to thrive in an interconnected and rapidly evolving world.

5. CONCLUSION

This research reveals a significant positive impact of integrating AI-based educational tools on student engagement and academic performance. The use of AI tools enhances active participation in class, and interaction with learning materials, and results in an increase in average grades as well as the percentage of grade improvement from the beginning to the end of the semester.

It is essential to continually explore and update this research to maximize the benefits of AI integration in education. As technology continues to advance, considering the implementation of more sophisticated adaptive learning algorithms to enhance personalized learning is necessary. Studies on ethics and privacy related to the use of AI technology in education also need to be expanded.

Furthermore, future research can focus on the development and integration of more advanced AI technologies, such as augmented reality (AR) or virtual reality (VR), in the learning process. By deepening our understanding in these areas, we can elevate education to a higher level, enabling more effective, efficient, and satisfying learning experiences for students in this digital era.

ACKNOWLEDGMENT

The author expresses his deepest gratitude to the Faculty of Science and Technology, University of Raharja, who have provided the resources to carry out this research successfully. The authors also thank Alphabet Incubator for providing facilities and financial support during this research.

REFERENCES

- [1] A. Korinek and J. E. Stiglitz, "Artificial intelligence, globalization, and strategies for economic development," National Bureau of Economic Research, Tech. Rep., 2021.
- [2] A. Sestino and A. De Mauro, "Leveraging artificial intelligence in business: Implications, applications and methods," *Technology Analysis & Strategic Management*, vol. 34, no. 1, pp. 16–29, 2022.
- [3] G. Zeba, M. Dabić, M. Čičak, T. Daim, and H. Yalcin, "Technology mining: Artificial intelligence in manufacturing," *Technological Forecasting and Social Change*, vol. 171, p. 120971, 2021.

- [4] A. Bécue, I. Praça, and J. Gama, "Artificial intelligence, cyber-threats and industry 4.0: Challenges and opportunities," *Artificial Intelligence Review*, vol. 54, no. 5, pp. 3849–3886, 2021.
- [5] V. Galaz, M. A. Centeno, P. W. Callahan, A. Causevic, T. Patterson, I. Brass, S. Baum, D. Farber, J. Fischer, D. Garcia *et al.*, "Artificial intelligence, systemic risks, and sustainability," *Technology in Society*, vol. 67, p. 101741, 2021.
- [6] L. N. Maulidia, S. Suparno, and U. J. Rosyidah, "A systematic literature review on technology-based learning media in ece to face society 5.0 era," *Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini*, vol. 7, no. 5, pp. 5181–5195, 2023.
- [7] Y. Liu, V. Sathishkumar, and A. Manickam, "Augmented reality technology based on school physical education training," *Computers and Electrical Engineering*, vol. 99, p. 107807, 2022.
- [8] T. M. L. Tran and T. T. H. Nguyen, "The impacts of technology-based communication on eff students' writing," *AsiaCALL Online Journal*, vol. 12, no. 5, pp. 54–76, 2021.
- [9] S.-U. Park, "Analysis of the status of natural language processing technology based on deep learning," *The Journal of Bigdata*, vol. 6, no. 1, pp. 63–81, 2021.
- [10] D. Immaniar, N. Azizah, D. Supriyanti, N. Septiani, and M. Hardini, "Pots: Proof of tunnel signature for certificate based on blockchain technology," *International Journal of Cyber and IT Service Management*, vol. 1, no. 1, pp. 101–114, 2021.
- [11] G.-Y. Ban and N. B. Keskin, "Personalized dynamic pricing with machine learning: High-dimensional features and heterogeneous elasticity," *Management Science*, vol. 67, no. 9, pp. 5549–5568, 2021.
- [12] U. Rahardja, M. Ngadi, R. Budiarto, Q. Aini, M. Hardini, and F. P. Oganda, "Education exchange storage protocol: Transformation into decentralized learning platform," in *Frontiers in Education*. Frontiers, 2021, p. 477.
- [13] E. Olivier, B. Galand, A. J. Morin, and V. Hospel, "Need-supportive teaching and student engagement in the classroom: Comparing the additive, synergistic, and global contributions," *Learning and Instruction*, vol. 71, p. 101389, 2021.
- [14] N. Septiani, A. S. Bist, C. S. Bangun, and E. Dolan, "Digital business student development for entrepreneurs with software," *Startupreneur Bisnis Digital*, vol. 1, no. 1 April, pp. 33–43, 2022.
- [15] I. Bouchrika, N. Harrati, V. Wanick, and G. Wills, "Exploring the impact of gamification on student engagement and involvement with e-learning systems," *Interactive Learning Environments*, vol. 29, no. 8, pp. 1244–1257, 2021.
- [16] T. Zacharias, Y. Yusriadi, H. Firman, and M. Rianti, "Poverty alleviation through entrepreneurship," *Journal of Legal, Ethical and Regulatory Issues*, vol. 24, pp. 1–5, 2021.
- [17] S. A. Raza, W. Qazi, and S. Q. Yousufi, "The influence of psychological, motivational, and behavioral factors on university students' achievements: the mediating effect of academic adjustment," *Journal of Applied Research in Higher Education*, vol. 13, no. 3, pp. 849–870, 2021.
- [18] O. Marfoq, G. Neglia, R. Vidal, and L. Kameni, "Personalized federated learning through local memorization," in *International Conference on Machine Learning*. PMLR, 2022, pp. 15 070–15 092.
- [19] B. Sun, H. Huo, Y. Yang, and B. Bai, "Partialfed: Cross-domain personalized federated learning via partial initialization," *Advances in Neural Information Processing Systems*, vol. 34, pp. 23 309–23 320, 2021.
- [20] A.-W. de Leeuw, S. van der Zwaard, R. van Baar, and A. Knobbe, "Personalized machine learning approach to injury monitoring in elite volleyball players," *European journal of sport science*, vol. 22, no. 4, pp. 511–520, 2022.

- [21] J. DeMink-Carthew and S. Netcoh, "Mixed feelings about choice: Exploring variation in middle school student experiences with making choices in a personalized learning project," in *Dialogues in Middle Level Education Research Volume 1*. Routledge, 2022, pp. 73–105.
- [22] B. Whalley, D. France, J. Park, A. Mauchline, and K. Welsh, "Towards flexible personalized learning and the future educational system in the fourth industrial revolution in the wake of covid-19," *Higher Education Pedagogies*, vol. 6, no. 1, pp. 79–99, 2021.
- [23] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or, "An image is worth one word: Personalizing text-to-image generation using textual inversion," *arXiv preprint arXiv:2208.01618*, 2022.
- [24] Z. Fu, X. He, E. Wang, J. Huo, J. Huang, and D. Wu, "Personalized human activity recognition based on integrated wearable sensor and transfer learning," *Sensors*, vol. 21, no. 3, p. 885, 2021.
- [25] P. Bedi, S. Goyal, A. S. Rajawat, R. N. Shaw, and A. Ghosh, "A framework for personalizing atypical web search sessions with concept-based user profiles using selective machine learning techniques," in *Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2021*. Springer, 2022, pp. 279–291.