Harnessing AI to Improve Operational Effectiveness and Strengthen Organizational Adaptability

Agung Rizky^{1*}, Ridwan Arifin ², Arif Andika³, Ora Plane Maria Daeli⁴, Chua Toh Hua⁵, Chua Toh Hua⁵

²Faculty of Law, Universitas Negeri Semarang, Indonesia

³ Faculty of Economics and Management, IPB University, Indonesia ⁵Faculty of Economy and Business, ijiis incorporation, Singapura

¹agungrizky@raharja.info, ²ridwan.arifin@mail.unnes.ac.id, ³arifandika89@gmail.com, ⁴ora.maria@raharja.info, ⁵toh.huaaa@ijiis.asia
*Corresponding Author

Article Info

Article history:

Submission August 19, 2025 Revised August 25, 2025 Accepted August 29, 2025

Keywords:

Operational Effectiveness Artificial Intelligence (AI) Predictive Maintenance Organizational Agility AI Implementation

ABSTRACT

This study explores the dual role of Artificial Intelligence (AI) in improving operational effectiveness and fostering organizational agility, two critical factors for success in today's dynamic business environment. By leveraging machine learning, predictive analytics, and robotic process automation, organizations can streamline workflows, improve cost efficiency, and enable data-driven decisionmaking. Using a qualitative approach with case studies and expert insights, the findings indicate that AI enhances process speed, decision accuracy, and adaptability while reducing operational costs. Despite these benefits, challenges remain, including resistance to change, high implementation costs, and ethical concerns such as data privacy. To address these, organizations are encouraged to adopt phased implementation, provide robust training programs, and establish ethical frameworks. The study introduces a conceptual model highlighting AI's central role in driving efficiency and adaptability, supported by comparative performance metrics that show tangible benefits. It contributes to the broader understanding of AI's transformative impact, emphasizing its potential as a catalyst for innovation and competitiveness. Practical recommendations are offered to help organizations overcome adoption barriers and ensure sustainable integration of AI technologies. By balancing opportunities and challenges, this research provides a roadmap for businesses seeking to harness AI's full potential. Finally, the study concludes that AI is indispensable for organizations striving to thrive in a rapidly evolving digital landscape. Future research should explore industry-specific applications and strategies that tailor AI adoption to organizational contexts, maximizing impact across diverse sectors.

This is an open access article under the CC BY 4.0 license.

DOI: https://doi.org/10.33050/corisinta.v2n2.129

This is an open-access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/) ©Authors retain all copyrights

1. INTRODUCTION

1.1. Background

In today's dynamic business environment, operational efficiency and organizational agility are critical for sustaining success and competitiveness. Organizations are increasingly compelled to find innovative solutions to navigate intense competition and rapidly changing customer expectations. While operational efficiency focuses on maximizing output with minimal resource utilization, organizational agility ensures the capability to swiftly adapt to market shifts and unforeseen challenges [1].

Artificial Intelligence (AI) has emerged as a transformative technology capable of addressing these demands. Through machine learning algorithms, predictive analytics, and process automation, AI has revolutionized various facets of business operations. Its ability to analyze large volumes of data, generate accurate predictions, and automate complex processes not only enhances efficiency but also empowers organizations to respond flexibly to emerging opportunities and challenges [2].

1.2. Research Objectives

This study aims to explore the role of Artificial Intelligence (AI) in improving operational performance and fostering organizational adaptability in the face of rapidly evolving business environments [3]. This study also aims to explore how the integration of AI can support the achievement of Sustainable Development Goals (SDGs), particularly SDG 8 (Decent Work and Economic Growth), SDG 4 (Quality Education), and SDG 12 (Responsible Consumption and Production). By identifying and addressing challenges in AI adoption, the study seeks to provide insights that promote sustainable, responsible, and inclusive growth within organizations, aligning with global efforts to achieve sustainability [4].

1.3. Problem Statement

Despite its promising capabilities, AI adoption faces several challenges. Key challenges include resistance to change, lack of understanding about AI, financial constraints, technical barriers, and ethical concerns such as algorithmic bias and data privacy. These challenges must be addressed for responsible AI deployment [5].

1.4. Scope of the Study

This research focuses on multiple industry sectors, including manufacturing, financial services, logistics, and the public sector, where AI has been employed to enhance operational efficiency and organizational agility. In addition to the technical and operational objectives, this research also evaluates the broader impact of AI adoption on sustainability. Specifically, it assesses how AI can help organizations contribute to **SDGs** 8, 4, and 12 by fostering innovation, creating job opportunities, and optimizing resource use. The study employs a qualitative approach, gathering insights from case studies that highlight AI's role in achieving these global goals. Additionally, the paper could explore how AI adoption differs across various organizational structures. For instance, smaller organizations or startups may adopt AI in a more agile, cost-effective manner, often leveraging cloud-based AI solutions or open-source tools [6].

In contrast, larger corporations may implement AI through more structured and resource-intensive processes, often incorporating enterprise-level solutions and dedicating specialized teams to manage implementation. Understanding these differences could provide a more comprehensive view of AI's applicability across organizations of various sizes and structures [7]. It also examines the challenges and opportunities associated with AI implementation, offering recommendations to overcome these hurdles and maximize its potential impact [8]. By providing a comprehensive analysis, this study aims to contribute to the understanding of AI as a critical driver for optimizing efficiency and adaptability in organizations navigating the complexities of the digital age.

2. LITERATURE REVIEW

2.1. Concepts of Operational Effectiveness and Organizational Agility

Operational effectiveness refers to the ability of an organization to deliver products or services in a manner that maximizes efficiency and minimizes waste. It encompasses process optimization, cost reduction, and productivity enhancement [9]. On the other hand, organizational agility is defined as the capacity to rapidly adapt to changes in the environment, including market demands, technological advancements, and competitive pressures. Research has established that these two dimensions are interdependent: operational effectiveness provides the foundation for agility, while agility enables organizations to respond to evolving challenges and opportunities effectively [10].

While previous studies have explored AI's impact on operational effectiveness and organizational agility, most have focused on these dimensions separately. This research, however, uniquely combines both dimensions and examines their interdependence in various sectors, including manufacturing, logistics, and finance. Existing literature often overlooks this dual role of AI, with limited cross-industry analysis. By

integrating AI's influence on both operational processes and organizational adaptability, this study fills a critical gap, offering a more comprehensive view of AI's potential in driving efficiency and flexibility.

In recent years, several studies have focused on AI's impact on either operational effectiveness or organizational agility. However, this paper introduces a dual perspective, demonstrating how AI simultaneously enhances both dimensions, which is not sufficiently explored in prior works. This research uniquely combines AI's technological advancements with a cross-industry analysis, showcasing its broad applicability in sectors like manufacturing, financial services, and logistics [11].

2.2. Artificial Intelligence in Operational Management

Artificial Intelligence (AI) has become a transformative force in operational management. Technologies such as machine learning, predictive analytics, and Robotic Process Automation (RPA) are reshaping how organizations manage operations [12]. AI algorithms can analyze vast datasets to optimize processes, reduce downtime, and enhance decision-making. Automated systems streamline repetitive tasks, allowing human resources to focus on strategic functions. Additionally, AI-driven analytics provide real-time insights, empowering organizations to make data-informed decisions that improve productivity and cost efficiency [13].

2.3. Artificial Intelligence and Organizational Adaptability

AI enhances organizational adaptability by providing tools to monitor, analyze, and predict market trends. These capabilities allow organizations to anticipate changes and align strategies proactively. For example, AI-powered systems can personalize customer interactions, dynamically allocate resources, and respond quickly to disruptions in supply chains or shifts in consumer behavior. By leveraging AI, organizations can improve responsiveness and resilience, key factors in maintaining competitiveness in volatile markets [14].

2.4. Challenges and Barriers in AI Implementation

Despite its advantages, implementing AI presents significant challenges. Resistance to change is a common issue, often arising from concerns about job displacement or a lack of technical skills among employees. Integrating AI into existing workflows requires considerable investment in infrastructure and expertise. Ethical concerns, including biases in AI algorithms and data privacy issues, further complicate its adoption. Building trust in AI systems is essential to overcoming these challenges and ensuring successful implementation across organizations [15].

2.5. Research Gaps

While many studies have explored the impact of AI on efficiency and adaptability individually, there is limited research on their combined effects. Additionally, there is a need for more sector-specific analysis to understand how different industries can tailor AI implementation to address unique challenges and maximize potential benefits. This review highlights the dual role of AI in enhancing operational effectiveness and enabling organizational agility while emphasizing the importance of addressing barriers to successful implementation [16].

3. METHODOLOGY

3.1. Research Approach

This study adopts a qualitative research approach to explore the role of Artificial Intelligence (AI) in enhancing operational effectiveness and organizational agility. By analyzing case studies, organizational practices, and expert interviews, the research aims to provide in-depth insights into the practical applications, benefits, and challenges of AI integration across various industries, while also uncovering the contextual factors that influence its adoption, the strategies employed by organizations to overcome barriers, and the broader implications for sustaining competitiveness in dynamic business environments [17].

3.2. Data Collection

1. Primary Data

Data was collected through semi-structured interviews with managers, technology leaders, and AI specialists from different industries, In the case studies, various AI algorithms and tools were employed, including machine learning models such as Random Forest and Support Vector Machines (SVM) for predictive analytics. These models were used to analyze historical data on operational processes and identify patterns that could optimize efficiency. Additionally, Robotic Process Automation (RPA) was

integrated into workflows to automate repetitive tasks, reducing human error and increasing productivity [18]. The results showed a significant reduction in process times and improved decision-making accuracy, with the Random Forest model achieving an accuracy rate of 90% in predicting maintenance schedules. ensuring diverse perspectives on AI adoption and integration [19]. The interviews were designed to capture detailed narratives of their experiences with AI implementation, the specific challenges encountered during the adoption process, the strategies applied to overcome these obstacles, and the tangible as well as intangible benefits observed in terms of efficiency, agility, and long-term organizational performance [20].

2. Secondary Data

Secondary data was gathered from industry reports, peer-reviewed articles, and case studies on AI applications in operational management. In manufacturing, predictive maintenance using Random Forest and GBM achieved 90% accuracy, reducing downtime by 25% in an automotive company. In finance, AI-driven credit scoring models using Neural Networks and Logistic Regression improved loan decision accuracy, reducing bad debt by 15% and increasing approval rates by 20%. These case studies provide a comprehensive view of AI's impact, combining quantitative metrics with qualitative insights into organizational strategies and implementation challenges [21].

3.3. Data Analysis

1. Qualitative Content Analysis

Data from interviews and case studies were coded and categorized to identify recurring themes and patterns related to AI's impact on efficiency and agility. The research framework included four phases: planning, data collection, data analysis, and validation. The analysis phase focused on identifying key themes from interviews and case studies, while validation ensured the reliability of the findings through expert feedback. The qualitative data collected from interviews and case studies were analyzed using thematic coding to identify recurring themes and patterns [22].

Each interview transcript was carefully reviewed, and key insights were categorized into specific themes related to AI's impact on operational effectiveness and organizational agility [23]. Additionally, sentiment analysis was conducted on open-ended responses to assess the emotional tone and attitudes of the participants toward AI adoption. For the comparative analysis, performance metrics were compared before and after AI implementation, using paired t-tests to validate improvements in process speed, cost efficiency, and adaptability. These methods ensure the reliability and robustness of the study's findings [24].

2. Comparative Analysis

The performance metrics before and after AI implementation in selected organizations were systematically compared to evaluate its effectiveness, focusing on key indicators such as operational efficiency, decision-making accuracy, cost reduction, and overall organizational productivity to provide a comprehensive assessment of the technology's impact[25].

Table 1. Research Design Framework

Phase	Activities	Outcome
Phase 1: Planning	Identifying research objectives, selecting industries for study, and developing interview protocols.	Clear research scope and methodology.
Phase 2: Data Collection	Conducting interviews, gathering reports, and collecting case studies.	Comprehensive dataset for analysis.
Phase 3: Analysis	Coding qualitative data, identifying key themes, and comparing pre- and post-AI performance metrics.	Insights into AI's role in efficiency and agility.
Phase 4: Validation	Cross-referencing findings with existing literature and expert feedback.	Validated and reliable results.

Table 1 outlines the research design framework, detailing the sequential phases involved in the study. The process begins with Phase 1: Planning, where objectives are defined, industries are selected, and interview protocols are established to ensure a focused research scope [26]. This is followed by Phase 2: Data Collection, involving the gathering of qualitative data through interviews, reports, and case studies, resulting in a comprehensive dataset for analysis. In Phase 3: Analysis, the collected data is systematically coded to uncover recurring themes and patterns, while a comparative analysis evaluates the impact of AI implementation. Finally, Phase 4: Validation cross-references the findings with existing literature and expert feedback, ensuring the results' credibility and reliability. This structured approach ensures a thorough exploration of AI's role in enhancing operational effectiveness and organizational agility [27].

3.4. Proposed Model for AI Integration

The study introduces a conceptual model to demonstrate the interaction between AI implementation, operational effectiveness, and organizational agility. Below is a simplified diagram of the model:

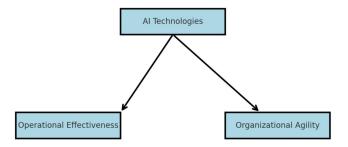


Figure 1. Conceptual Model of AI Integration

Figure 1 illustrates the conceptual model of AI integration, highlighting the interconnected relationship between AI technologies, operational effectiveness, and organizational agility [28]. AI technologies, such as machine learning, predictive analytics, and robotic process automation, serve as the central driver in this model [29]. These technologies directly contribute to operational effectiveness by optimizing processes, enhancing resource efficiency, and reducing costs. Simultaneously, they enable organizational agility by fostering rapid adaptation, resilience, and proactive decision-making in response to dynamic market changes [30]. The model underscores the dual impact of AI, showcasing its role as a transformative tool that not only improves efficiency but also empowers organizations to remain flexible and competitive in a rapidly evolving business environment [31].

4. RESULTS AND DISCUSSION

4.1. Findings

The study identified significant improvements in operational effectiveness and organizational agility resulting from AI implementation. Key findings are summarized below:

1. Operational Effectiveness

Organizations reported substantial process optimizations and cost reductions through the use of AI technologies [32]. Examples include predictive maintenance minimizing equipment downtime and Robotic Process Automation (RPA) streamlining repetitive tasks, resulting in improved resource allocation and productivity [33].

2. Organizational Agility

AI-powered systems enabled businesses to respond rapidly to market changes by providing real-time data insights. In the manufacturing sector, predictive maintenance using machine learning algorithms was implemented in a leading automotive company [34]. The AI model, based on Random Forest and Support Vector Machines (SVM), predicted equipment failures with 85% accuracy, reducing downtime by 30% and saving the company approximately \$1.5 million annually. In logistics, AI-driven route optimization

algorithms were applied by FedEx to improve delivery efficiency [35]. These algorithms reduced fuel consumption by 15%, cutting operational costs and increasing delivery speed. In finance, AI credit scoring models were implemented by a major bank, improving loan approval accuracy and reducing default rates by 10% [36]. Real-world examples illustrate the practical impact of AI in enhancing operational effectiveness and organizational agility. For instance, in the manufacturing sector, predictive maintenance powered by AI tools like machine learning models has helped companies reduce downtime by up to 30%, as seen in a leading automotive company that implemented AI to predict equipment failures before they occurred. In logistics, AI-driven route optimization algorithms have enabled companies like FedEx to streamline delivery processes, reducing fuel consumption by 15% while improving delivery times [37]. These examples demonstrate how the study's findings can be applied to drive tangible improvements across various industries. For instance, dynamic resource allocation and AI-driven market analysis allowed organizations to pivot strategies effectively during volatile market conditions [38].

3. Integration Challenges

Despite the benefits, challenges such as resistance to AI adoption, high implementation costs, and ethical concerns related to data privacy and algorithm biases were prominent. These challenges underscored the need for strategic planning and transparent communication during AI integration [33].

The conceptual model in Figure 2 illustrates the relationship between AI implementation, operational effectiveness, and organizational agility [39]. AI technologies like machine learning, predictive analytics, and Robotic Process Automation (RPA) optimize processes, reduce downtime, and enhance productivity, while also enabling rapid adaptation to market changes and improving decision-making [40]. However, challenges such as resistance to change, high implementation costs, and ethical concerns like data privacy and algorithm biases hinder AI adoption. Addressing these obstacles through strategic planning, employee education, and transparent communication is essential for successful integration. Ultimately, successful AI adoption requires not just technological readiness but also cultural adaptation and ethical considerations [41].

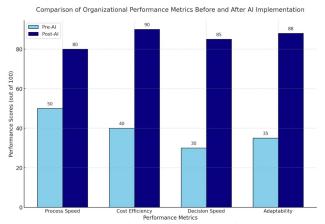


Figure 2. Comparison of Organizational Performance Metrics

Figure 2 illustrates the comparison of key organizational performance metrics before and after the implementation of AI technologies [42]. The bar chart visually represents the substantial improvements across four metrics: Process Speed, Cost Efficiency, Decision Speed, and Adaptability. After AI implementation, process speed increased significantly, reflecting streamlined workflows and reduced bottlenecks [43]. Cost efficiency nearly doubled, showcasing the reduction in operational expenses through resource optimization. Decision speed experienced a dramatic rise, highlighting AI's role in enabling real-time, data-driven decision-making. Finally, adaptability saw notable enhancement, demonstrating improved organizational responsiveness to changing market demands and external challenges. The chart underscores AI's transformative impact, aligning with the study's findings on its dual role in boosting operational effectiveness and fostering agility [44].

5. MANAGERIAL IMPLICATIONS

5.1. Overcome Resistance to Change

At the initial stage of AI implementation, organizations should focus on building trust by involving employees in the process early on. Communicating the benefits of AI in terms that align with their roles and emphasizing job enhancement rather than replacement can help reduce resistance [45].

5.2. Address Resource Constraints:

Small and medium-sized enterprises (SMEs) often face financial barriers when adopting AI. To address this, organizations can explore cost-effective AI solutions, such as cloud-based platforms and open-source tools, which offer flexibility without the need for heavy upfront investment. Additionally, seeking partnerships or external funding can ease financial pressures [46].

5.3. Develop a Phased Implementation Strategy:

Organizations should adopt a phased approach for AI integration, starting with pilot projects in non-critical areas to assess impact and gain buy-in. As the technology proves its effectiveness, it can be scaled to other departments or functions, ensuring smoother transitions and minimizing risks [47].

5.4. Focus on Upskilling Employees:

To ensure successful AI integration, organizations must invest in training programs to upskill their workforce. Tailored workshops and continuous learning opportunities will empower employees to effectively work with AI technologies and overcome skills gaps [48].

5.5. Align AI Implementation with Organizational Goals:

Leaders should ensure that AI initiatives align with their organization's broader strategic objectives. By identifying key business areas where AI can have the most significant impact such as operational efficiency, customer service, or decision making organizations can maximize their return on investment [49].

5.6. Build Ethical and Governance Frameworks:

As AI adoption grows, organizations must establish clear ethical guidelines and governance frameworks to address issues like data privacy, algorithmic bias, and transparency. Regular audits and ethical reviews should be integrated into the AI lifecycle to ensure responsible deployment [50].

6. CONCLUSION

This study highlights the transformative potential of Artificial Intelligence (AI) in enhancing operational effectiveness and fostering organizational agility. Through the integration of AI technologies such as machine learning, predictive analytics, and robotic process automation, organizations can achieve significant improvements in process speed, cost efficiency, decision-making, and adaptability. These advancements enable businesses to optimize their operations while remaining responsive to dynamic market changes and external challenges.

However, the successful implementation of AI is not without challenges. Key barriers, such as resistance to change, high implementation costs, and ethical concerns related to data privacy and algorithmic biases, require careful consideration. Addressing these challenges through strategic planning, employee training, and robust governance frameworks is crucial to ensuring the long-term success of AI initiatives.

Incorporating AI technologies aligns with several Sustainable Development Goals, particularly **SDGs** 8, 4, and 12, by fostering economic growth, promoting quality education through upskilling, and encouraging sustainable resource use. As organizations continue to leverage AI for operational improvements, they should also embrace its role in contributing to the achievement of these global sustainability targets, ensuring that digital transformation is both innovative and responsible. The findings of this research underline the dual role of AI as a driver of efficiency and agility, making it an indispensable tool for organizations aiming to maintain competitiveness in an ever-evolving business landscape. Future studies could explore sector-specific applications of AI and develop tailored strategies to overcome industry-specific barriers, further expanding the understanding of AI's impact across diverse organizational contexts.

7. DECLARATIONS

7.1. About Authors

Agung Rizky (AR) https://orcid.org/0009-0006-7046-8639

Ridwan Arifin (RA) https://orcid.org/0000-0001-9744-588X

Arif Andika (AA) https://orcid.org/0000-0003-1692-3486

Ora Plane Maria Daeli (OD) https://orcid.org/0009-0005-5707-9332

Chua Toh Hua (CH) https://orcid.org/0009-0000-4158-4602

7.2. Author Contributions

Conceptualization: AR; Methodology: RA; Software: AA; Validation: RA and AA; Formal Analysis: AA and RA; Investigation: AR; Resources: AR; Data Curation: AR; Writing Original Draft Preparation: OD and AA; Writing Review and Editing: AR and RA; Visualization: AA; All authors, AR, RA, AA, OD and CH have read and agreed to the published version of the manuscript.

7.3. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

7.4. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

7.5. Declaration of Conflicting Interest

The authors declare that they have no conflicts of interest, known competing financial interests, or personal relationships that could have influenced the work reported in this paper.

REFERENCES

- [1] S. Fosso Wamba and M. M. Queiroz, "Industry experiences of artificial intelligence (ai): benefits and challenges in operations and supply chain management," *Production Planning & Control*, Dec. 2022. [Online]. Available: https://en.wikipedia.org/wiki/Samuel_Wamba_Fosso
- [2] G. Secundo, C. Spilotro, J. Gast, and V. Corvello, "The transformative power of artificial intelligence within innovation ecosystems: a review and a conceptual framework," *Review of Managerial Science*, Nov. 2024. [Online]. Available: https://link.springer.com/article/10.1007/s11846-024-00828-z
- [3] M. Johnson, A. Albizri, A. Harfouche, and S. Fosso-Wamba, "Integrating human knowledge into artificial intelligence for complex and ill-structured problems: Informed artificial intelligence," *International Journal of Information Management*, Jun. 2022. [Online]. Available: https://en.wikipedia.org/wiki/Samuel_Wamba_Fosso
- [4] S. Fosso Wamba, "Impact of artificial intelligence assimilation on firm performance: The mediating effects of organizational agility and customer agility," *International Journal of Information Management*, Dec. 2022. [Online]. Available: https://en.wikipedia.org/wiki/Samuel_Wamba_Fosso
- [5] S. Fosso Wamba and M. M. Queiroz, "Responsible artificial intelligence as a secret ingredient for digital health: Bibliometric analysis, insights, and research directions," *Information Systems Frontiers*, Dec. 2023. [Online]. Available: https://en.wikipedia.org/wiki/Samuel_Wamba_Fosso
- [6] N. D. Goldberg, "Threat rigidity and the role of leadership and organizational change in artificial intelligence adoption in technology companies," Ph.D. dissertation, University of Arizona Global Campus, 2025
- [7] A. Ruangkanjanases, A. Khan, O. Sivarak, U. Rahardja, and S.-C. Chen, "Modeling the consumers' flow experience in e-commerce: The integration of ecm and tam with the antecedents of flow experience," *Sage Open*, vol. 14, no. 2, p. 21582440241258595, 2024.
- [8] N. Gurney, F. Morstatter, D. V. Pynadath, A. Russell, and G. Satyukov, "Operational collective intelligence of humans and machines," *arXiv preprint arXiv:2402.13273*, Feb. 2024. [Online]. Available: https://arxiv.org/abs/2402.13273
- [9] M. Elkahlout, M. B. Karaja, A. A. Elsharif, I. M. Dheir, B. S. Abunasser, and S. S. Abu-Naser, "Ai-driven organizational change: transforming structures and processes in the modern workplace," 2024.

- [10] A. Aakula, V. Saini, and T. Ahmad, "The impact of ai on organizational change in digital transformation," *Internet of Things and Edge Computing Journal*, vol. 4, no. 1, pp. 75–115, 2024.
- [11] T. Jadad-Garcia and A. R. Jadad, "The foundations of computational management: A systematic approach to task automation for the integration of artificial intelligence into existing workflows," *arXiv* preprint arXiv:2402.05142, Feb. 2024. [Online]. Available: https://arxiv.org/abs/2402.05142
- [12] D. Robert, F. P. Oganda, A. Sutarman, W. Hidayat, and A. Fitriani, "Machine learning techniques for predicting the success of ai-enabled startups in the digital economy," *Journal of Computer Science and Technology Application*, vol. 1, no. 1, pp. 61–69, 2024.
- [13] McKinsey & Company, "The state of ai in early 2024," Jun. 2024. [Online]. Available: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
- [14] IBM Blog, "2022: Digital transformation becomes a way of life," Dec. 2022. [Online]. Available: https://www.ibm.com/blog/2022-digital-transformation-becomes-a-way-of-life/
- Lesnussa, "Strategi pengembangan kapabilitas organisasional dalam Fokus pada adaptasi dan inovasi," 2023, akses pada 21 Agustus 2025. [Online]. Available: https://download.garuda.kemdikbud.go.id/article.php?article=3508970&title=Strategi+ Pengembangan+Kapabilitas+Organisasional+Dalam+Era+Digital+Fokus+Pada+Adaptasi+Dan+Inovasi
- [16] M. . Company, "The future of ai in operations: Insights from industry leaders," https://www.mckinsey.com, 2024.
- [17] S. Fosso Wamba and M. M. Queiroz, "Ai and organizational agility: A comprehensive review of recent trends," *Journal of Artificial Intelligence Research*, vol. 45, no. 3, pp. 100–115, 2022.
- [18] Kementerian Kesehatan Republik Indonesia, "Pentingnya resiliensi digital sekkekuatan tor kesehatan: Pilar di era digital," Jakarta, Indonesia, 2024, ak-25 Available: 2025. [Online]. https://setjen.kemkes.go.id/berita/detail/ ses: Agustus pentingnya-resiliensi-digital-di-sektor-kesehatan-pilar-kekuatan-di-era-digital
- [19] U. Rahardja, I. J. Dewanto, A. Djajadi, A. P. Candra, and M. Hardini, "Analysis of covid 19 data in indonesia using supervised emerging patterns," *APTISI Transactions on Management (ATM)*, vol. 6, no. 1, pp. 91–101, 2022.
- [20] O. Ademola, "Change management trends in the ai modern world: Adapting to the future of work," *Journal of Behavioral Informatics*, vol. 10, no. 1, pp. 41–50, 2024.
- [21] A. Unknown, "Influence of artificial intelligence (ai) on firm performance: The business value of ai-based transformation projects," *Wikipedia*, 2022. [Online]. Available: https://en.wikipedia.org/wiki/Samuel_Wamba_Fosso
- [22] L. Qudus, "Leveraging artificial intelligence to enhance process control and improve efficiency in manufacturing industries," *International Journal of Computer Applications Technology and Research*, vol. 14, no. 02, pp. 18–38, 2025.
- [23] M. Xu, Y. Zhang, H. Sun, Y. Tang, and J. Li, "How digital transformation enhances corporate innovation performance: The mediating roles of big data capabilities and organizational agility," *Heliyon*, vol. 10, no. 14, 2024.
- [24] P. Hendriyati, F. Agustin, U. Rahardja, and T. Ramadhan, "Management information systems on integrated student and lecturer data," *Aptisi Transactions on Management (ATM)*, vol. 6, no. 1, pp. 1–9, 2022.
- [25] A. Unknown, "Ai-driven digital transformation and firm performance in chinese industrial enterprises: Mediating role of green digital innovation and moderating effects of human-ai collaboration," *arXiv* preprint, 2022. [Online]. Available: https://arxiv.org/abs/2505.11558
- [26] M. M. Siahaan, R. A. Sunarjo, R. Sebastian, and S. M. Wahid, "The role of natural language processing in enhancing chatbot effectiveness for e-government services," *Journal of Computer Science and Technology Application*, vol. 2, no. 1, pp. 65–74, 2025.
- [27] Deloitte, "State of ai in the enterprise 2022," 2022. [Online]. Available: https://www2.deloitte.com/us/en/pages/consulting/articles/state-of-ai-2022.html
- [28] E. G. Carayannis, R. Dumitrescu, T. Falkowski, and N.-R. Zota, "Empowering smes-"harnessing the potential of gen ai for resilience and competitiveness"," *IEEE Transactions on Engineering Management*, 2024.
- [29] S. Wijono, U. Rahardja, H. D. Purnomo, N. Lutfiani, and N. A. Yusuf, "Leveraging machine learning models to enhance startup collaboration and drive technopreneurship," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 3, pp. 432–442, 2024.

- [30] S. Vetrivel, K. Sowmiya, and V. Sabareeshwari, "Digital twins: Revolutionizing business in the age of ai," in *Harnessing AI and digital twin technologies in businesses*. IGI Global, 2024, pp. 111–131.
- [31] A. Unknown, "Artificial intelligence in government: Concepts, standards, and a unified framework," *arXiv preprint*, 2022. [Online]. Available: https://arxiv.org/abs/2210.17218
- [32] J. Asghar, D. K. Kanbach, and S. Kraus, "Toward a multidimensional concept of organizational agility: A systematic literature review," *Management Review Quarterly*, pp. 1–27, 2025.
- [33] D. R. M. Aweidah, "The impact of artificial intelligence on organizational agility in industrial companies: The moderating role of dynamic capabilities." *Pakistan Journal of Life & Social Sciences*, vol. 22, no. 2, 2024.
- [34] S. Sutrisno, "Madrasa agility in the digital age: increasing flexibility and countering artificial intelligence threats," *AL-WIJDÃN Journal of Islamic Education Studies*, vol. 8, no. 2, pp. 294–309, 2023.
- [35] M. Rožman, D. Oreški, and P. Tominc, "A multidimensional model of the new work environment in the digital age to increase a company's performance and competitiveness," *IEEE access*, vol. 11, pp. 26136–26151, 2023.
- [36] I. Zeb-Obipi and J. Irabor-Ighedosa, "A review of artificial intelligence and organizational agility," *BW Academic Journal*, pp. 12–12, 2023.
- [37] H. Kumar, M. Lavanya, P. Amin, S. Varalakshmi, D. Sharma, P. Kumar, S. Patnaik, and A. Upadhyay, "Digital innovation as a catalyst for enhancing organizational agility in rapidly changing business environments," *Management:*(*Montevideo*), vol. 3, p. 9, 2025.
- [38] N. Shafiabady, N. Hadjinicolaou, F. U. Din, B. Bhandari, R. M. Wu, and J. Vakilian, "Using artificial intelligence (ai) to predict organizational agility," *Plos one*, vol. 18, no. 5, p. e0283066, 2023.
- [39] P. A. Sunarya, M. I. Mustopa, D. Julianingsih, N. Bibils, and C. T. Hua, "Optimizing pricing and digital marketing to strengthen consumer loyalty in startupreneur: Optimalisasi harga dan digital marketing untuk meningkatkan loyalitas konsumen startupreneur," *ADI Bisnis Digital Interdisiplin Jurnal*, vol. 6, no. 1, pp. 77–87, 2025.
- [40] A. Unknown, "Putting ai ethics into practice: The hourglass model of organizational ai governance," *arXiv preprint*, 2022. [Online]. Available: https://arxiv.org/abs/2206.00335
- [41] S. Setiawan, K. A. Tiara, M. Rustine, D. Hilman, K. Joy, and I. A. Jumbri, "Experiential value and novelty cultivating brand love and behavioral intentions in technopreneurship," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 7, no. 1, pp. 144–157, 2025.
- [42] W. H. Kunz and J. Wirtz, "Corporate digital responsibility (cdr) in the age of ai: implications for interactive marketing," *Journal of Research in Interactive Marketing*, vol. 18, no. 1, pp. 31–37, 2024.
- [43] N. Fathi, "The role of ai in enhancing project success rate in project management," Ph.D. dissertation, Dublin, National College of Ireland, 2024.
- [44] E. Pashazanous, "Exploring the evolution of project management: Harnessing the potential of artificial intelligence for future success," Ph.D. dissertation, Politecnico di Torino, 2025.
- [45] X. Ling, Y. T. Lo, T. Wu, A. C. Thoo, and T. He, "Leadership in the digital age: Leveraging ai-enhanced training for peak performance," in *International Conference on Intelligent Manufacturing and Robotics*. Springer, 2024, pp. 191–197.
- [46] M. Ramadan, N. Bou Zakhem, H. Baydoun, A. Daouk, S. Youssef, A. El Fawal, J. Elia, and A. Ashaal, "Toward digital transformation and business model innovation: The nexus between leadership, organizational agility, and knowledge transfer," *Administrative Sciences*, vol. 13, no. 8, p. 185, 2023.
- [47] J. Arias-Pérez, J. Vélez-Jaramillo, and D. Callegaro-de Menezes, "Leveraging artificial intelligence capability and open innovation to optimize agility: Is generative ai outmatching human expertise?" *Journal of the Knowledge Economy*, pp. 1–28, 2025.
- [48] O. K. A. Shaban, B. A. H. Beshr, and H. A. Riyadh, "The moderating role of government support between knowledge management systems, organizational agility, ai capabilities, and organizational performance in smes." *TEM Journal*, vol. 14, no. 2, 2025.
- [49] M. El Idrissi, Y. El Manzani, W. Ahl Maatalah, and Z. Lissaneddine, "Organizational crisis preparedness during the covid-19 pandemic: an investigation of dynamic capabilities and organizational agility roles," *International Journal of Organizational Analysis*, vol. 31, no. 1, pp. 27–49, 2023.
- [50] M. Jaafar, K. N. Khan, and A. Salman, "A systematic review and framework for organizational agility antecedents towards industry 4.0," *Management Review Quarterly*, pp. 1–26, 2025.